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Abstract —In the first paper of this series, we presented an extension of the classical theory of dynamic
reliability in which the actual occurrence of an event causing a change in the system dynamics is possibly
delayed. The concept of stimulus activation, which triggers the realization of an event after a distributed
time delay, was introduced. This gives a new understanding of competing events in the sequence delinea-
tion process.

In the context of the level-2 probabilistic safety analysis (PSA), the information on stimulus activation
mainly consists of regions of the process variables space where the activation can occur with a given
probability. The evolution equations of the extended theory of probabilistic dynamics are therefore par-
ticularized to a transport process between discrete cells defined in phase-space on this basis. Doing so, an
integrated and coherent approach to level-2 PSA problems is propounded. This amounts to including the
stimulus concept and the associated stochastic delays discussed in the first paper in the frame of a
cell-to-cell transport process.

In addition, this discrete model provides a theoretical basis for the definition of appropriate numer-
ical schemes for integrated level-2 PSA applications.

I. INTRODUCTION velopment. This allows potentially an automatic gener-
ation of accident scenaridsSuch an approach has been
Integrating the dynamic behavior of a plant in tran-syccessfully applied to the construction of setpoint-
sient conditions in the delineation of accident sequencesased event trees, characteristic of level-1 PSA stifdies.
can be a major concern in the probabilistic safety analy-  |n the first paper of this seri¢sthe assumption of
sis(PSA studies of nuclear power plants when hardwareinstantaneous change in the system dynamics when, e.g.,
software—process variable-human interaction any  a setpoint is crossed has been released. This has given
combination is involved. Such a circumstance is oftenrise to an extended methodology in which the time to
met in level-2 analyses. The theory of probabilistic dy-occurrence of an event is seen as the sum of two possi-
namics offers a framework in which the competition ply random times: the time to activation of a stimulus
between events defining possible PSA headers is driveghd the elapsing of a delay. The general term of stimu-
by the thermohydraulic process evolution in accident detys covers any situation that “triggers” an event, be it
the entry in a new system configuration, the crossing of
*E-mail: pelabeau@ulb.ac.be a setpoint, or the satisfaction of combustion criteria.
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Integral transportlike equations were derived from thiggiven in Ref. 4 for both semi-Markov and non-Markov
assumption in two modeling cases: Either all activateadases. A practical implementation of the proposed scheme
stimuli are disactivated as soon as an event takes plads, propounded in Sec. V. Conclusions and perspectives
or some of them can remain activated in the new conare finally given.
figuration that the system has entered after the event
occurrence. In terms of stochastic processes, the first
situation corresponds to a semi-Markov evolution of
the branching process, where the system is regenerated
at the beginning of a new branch, while the second falls
under the umbrella of non-Markov modeling since the
past history of the system is likely to affect its future [lLA. Discretization of Time
evolution. and Process Variables
Yet, the mathematical problem defined in this way .
is highly dimensional and hardly tractable when taken _ Process control systems are an important part of most
to its full extent and applied to industrial cases. How-industrial systems. Yet, when trying to account for their
ever, the full-scale theory developed in the Companiomstantane_ou§.soI|C|ta‘g|on and action mthefr_ame of Mar-
papef gives the basis for the deduction of a schemé<0Y'an_ rellabl_llty, an important problem arises: Only
adapted to the level-2 PSA constraints. The method wBointwise actions whose agenda could be fixed at the
present in this paper is inspired by the following obserP€ginning of the analysige.g., inspection and mainte-
vatior?: Large cells defined in the process variablesh@nce actions at fixed epogtean be included in a strict
space naturally arise in the classical PSA approach iflarkovian treatment. As for process control systems,
the characterization of the undesired, damage situdbe time of thel_r sollc_ltatlon is d_efmeq by the evolut|0_n
tions, like core melt or containment rupture. Moreover,0f the process itself, in the configuration the system lies
PSA practitioners are not interested in the detailed dell’ just before reaching the control setpoint. They cannot
pendence on the process variables of the probability d?€ accounted for as such in a Markovian model.
a given undesired event but in the probability of this A Pioneer paper in dynamic reliabilitypropounded
event occurring in specific regions of the process varif0 model the dynamic behavior of the system over a time
ables space. When considering level-2 PSA problem§,tep as a_ltransmon betwe_en two ceIIs_ defined in the pro-
stimuli are mainly associated with setpoints and event§€SS variables space. Doing so, hybrid states are defined
taking place within regions of the process variables spac®y the combination of a cell and a configuration of the
with known probabilities. The details of the stimulus System components. While independently developed, this
activation within such regions is either irrelevant orWork extended the cell-to-cell mapping concept pro-
beyond the scope of the analysis. Stimuli provide thereP0sed in Ref. 8 to find the domains of attraction of non-
fore a problem-related partition of phase-space in celldineéar systems to the probabilistic analysis of systems
The branching process in the continuous event tree, whidpith stochastlc_ conflguratlons._ Tran_smon probabilities
is driven by the evolution of the continuous process’€tween cells in a given configuration come from the
variables along the accident sequence in the full-scalinterpretation of the fraction of dynamic evolutions
theory? must now be understood in the frame of a dy-Starting from the first cell and reaching the second one
namic cell-to-cell transport theory. after a delay equal to the time stepof the Markov
Before investigating this point, it should be re- PrOCESS. _ _ o
minded that partitioning phase-space in cells is not an Let us summarize mathematically the main lines of
innovative idea in dynamic reliability. Indeed, it was al- the method. A partition of the safety doménin cells
ready envisioned to include setpoint-based control de¥m: M= 1...M, is first defined
vices in the discrete-state Markov methodoléggven v
before the theory of probabilistic dynamics was formu- UVa=D, VaNV,=Zifm#n . (1)
lated. It is therefore worth examining the corresponding m=1
techniques, not in their efficiency as numerical schemes
but in their ability to model properly the dynamic as- Additional cells cover the outer region &fin the pro-
pects of the problem. cess variables space. They are supposed to be absorbing
Section Il thus presents an overview of the pros an@nd are therefore called sink cells. Control setpoints
cons of this pioneer approach in both its time-discreteshould be placed at the boundaries of cells, and not in-
and continuous versions and raises issues related to te&le them, for a better modeling of the corresponding
correctness of this discretization method. Section IIl igransitions on demand.
dedicated to how the partition in cells can be directly  The transition probabilitg..(i,7) between cell¥/,,
related to the definition of the stimuli and on which basisandV,, in a configuration, in which the dynamic evolu-
the cell-to-cell transport process should be consideredion of the process variablesis given byg(t, X,) at
Section IV presents the discretized form of the equationsme t after entering at X, is written

II. OVERVIEW OF CELL-TO-CELL MAPPING
TECHNIQUES IN SYSTEM RELIABILITY

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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1 S are necessary. But, these can lead, in the estima-
(i.7) = { MV f Hn(Gi (7, %)) dx if Vi, € D tion of the transition probabilitiessee Eq(2)], to
Grmnll, 7 mJ <V a very smallor even ni) probability to leave some
Omn if Vi, € D , cells. Besides the numerical issue of accuracy, a
modeling problem thus arises: The dynamics un-
@ derlying the whole process is incorrectly repre-
wherem(V,,) is the volume of celV,,. Equation(2) makes sented if the size of the cells is not reduced in
use ofH,(X), the characteristic function of cell,, de- correspondence to the valueof

fined by « Transitions probabilities between system configu-
1 ifxEeV, rations may depend on the value of some process
0 ifxeV 3 variables. Whether this dependence must be ac-
nc counted for inVy, or in V, in determining the prob-
The integral in Eq(2) over V,, is in practice approxi- abilitiesh;; (m — n, 7) is not obvious.
mated by a-point quadrature with equal weighting. Then,
if ¢’ out of thec trajectoriegj; (7, X) leaving cellV,, ends
up within cellV,, gmn(i, 7) is estimated by the ratio/c.
A similar idea will be further explored in Sec. V.
Transitions between system configurations are su
posed to occur at the end of the time step, with a prob
bility hj (m— n,7) when leaving statefor statej, while

Ha(X) = {

To tackle these two difficulties related to the dis-
crete nature in time of Ed5), a time-continuous version
of the cell-to-cell discretization technique was propound-
ed? It is based on the integration over a cell of the
pC:hapman-KoImogorov equation, which was deduced in
%Ref. 1 to model dynamic reliability problems:

the system dynamics has moved from &gllto cell V, dm(X,i,1) o
on the time intervat. Therefore, the transition probabil- >~ div(fi ()7 (X,i,1))
ity between the hybrid statés V,,) and( j, V,) is written
Gim,in(7) = Gmn(i,7)-hy(M—>n,7) . (4) = —A(X)7(%,i,t) + X p(j = i[07(%],1) ,

j#i
Equation(4) defines the elements of a transition matrix
G. Vector#(t), whose components are the probabilities (6)
mim(t) to be in the different hybrid state$, Vi), then  \yhere
evolves with time according to (i) babil i q
_ _ _ (X,1,1) dX = probability to find the system idXx
7kr)" = 7(k=1)7)"-G=7(0)"-G" . ) aboutx, in configurationi and at
The approach sketched above thus succeeds in express- timet
ing the continuous process variables evolution by tran-
sitions between discrete cells, as the system evolution is
represented by a Markov chain between hybrid states.
This approach thus appears as a discretization scheme to
obtain the probability distribution of the system lying in
a cell and in a given configuration, but it does not allow

dx/dt = f;(X) = expression of the dynamics inin
differential form[the solution of this
set of ordinary differential equa-
tions with the initial condition
%X(0) = X, gives backk = G; (t, X,)]

easy identification of the scenarios leading to an un- p(j — i|X) = transition rate betwegrandi, given
desired situation, with the possible sequence branchings X, With A;(X) = 2 p(i = j[X) =
being hidden in the matrix of transition probabilities be- —p(i = i[x).

tween hybrid states. ) oo ) o
Assumingmr (X,i,t) is uniformly distributed on each

I1.B. Time-Continuous Cell-to-Cell cell, after integrating Eq(6) on cell Vy,,, we obtain
Mapping Technique
A7im(t)

Besides the size of the discrete state-space to be han- a7 jg fi () -N(Rs) 7 (s, 1, 1) AR
dled when using a large number of cells, the discretiza- Sm

tion method summarized in Sec. Il.A suffers from several c
other drawbacks: = 2, Li(m)mim(t) . (7)
]

» Though control setpoints are boundaries of cells . o
the solicitation of process control devices takedn Ed: (7), Sn 'SI‘ th(re]_lborder of celVm, andn(xs) is its
place at discrete time intervaks and not at the ©Xterior normal, while

exact time the corresponding setpoint is reached. 1
To avoid the discrepancy between the real situa- LG (m) = f p(j—ilx)dx . 8
tion and the time discretization, small valuesrof m(Vim) Jv,

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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The surface integral in Eq7) represents the net proba- The continuous version of the method that we

bility flux out of cell V,,, due to the dynamic drift in state sketched in Sec. II.B turns out to overcome this diffi-

i. As we aim at interpreting the process variables evolueulty. Yet, it does not suppress another intrinsic source
tion as state transitions between discrete cells, we musft error associated with how the transfer between cells
split this integral between the total flux leaving c®}, in the way it is modeled actually modifies the problem

and the ingoing contributions from neighboring cells.to be solved, potentially introducing nonphysical situa-
Therefore, we define the transition rate between délls tions through a probability “leakage” between cells.

andV, in dynamicsi as To understand the latter statement, it should first be
reminded that accident sequenéestransient scenarios

1 o in general correspond to trajectories in the process vari-

"MV Jis N(Xs)-fi(Xs)dxs  if m=n ables space, which do not entirely fill the safety domain

L (i) = ' partitioned in cells, even if the dynamics in the different
1 N Froy e configurations are defined everywhere. Indeed, once the

N(Xs)-fi(Xs) dXs if m#n . -

MV Jsnsyr ’ initial steady-state conditions are left, the system enters

a configuration in which the process variables evolve
(9) deterministically as long as no branching takes place. In
this first section of the transient, the time evolutionxof
where(S);" is the part ofSwheren(%s).f(%s) > 0. The follows a one-dimensional curve in the safety domain. If
transition rate between the hybrid stat¢s/,) and(i,V,,) @ branching comes from the solicitation of a control de-

then is written vice when crossing a setpoint, this curve will be split
into two parts: one of them carrying the failure probabil-
Linim = LS (N)8nm + LEn()) Qs (n— m) . (10) ity of the control device and the other one carrying the

complementary probability. If the next branching is as-
sociated with the time distributed occurrence of an event,
the set of all possible values &f after the change of
configuration becomes a section of a two-dimensional
urface since an additional degree of freedd@m®., the
ranching tim¢ was introduced. The dimensions of the
support of the probability densities(X%,i,t) will in-
crease in this way by one unit after each nondeterminis-

In Eq. (10), Q;(n — m) stands for the probability of
moving from statg to statei when crossing the control
setpoint between cellg, andV,,. This quantity is equal
to & when the border common to these cells has n(%
physical interpretation.

With these definitions, Ed.7) becomes

drri (1) tic transition between configuratioA$.Because of its
— = =3 Linimmn(t) . (11)  singular nature, the support af(%,i,t) does not fully
dt ion cover the process variables domain partitioned in cells.

o _ o For this reason, in the development of a scenario,
The original problem of dynamic reliabilifysee Eq(6)]  when the process variables enter a given cell in a given
is continuous in the evolution of the process Variable%]ynamics, they do not necessarily have access to all the
and discrete in the branchings between system configyreighboring cells; even if the dynamics is well defined
rations. The cell-to-cell discretization reduces it to a timeand outgoing at some points of each border of the cell,
continuous Markov problem in a discrete space of hybridhese points could belong to unreachable regions in the

states(i, Vin). continuous evolution process. Yet, in this case, @).
defines transition rates between all neighboring cells in
I.C. How Cell-to-Cell Discretization Affects all configurations, even though the real physical trajec-
the Problem tories underlying the accident sequences could never reach

their common border in some dynamics. The direct con-

At the beginning of Sec. II.B, a discussion wassequence of this incorrect modeling is to obtain a non-
initiated on the potential impact of the time steppn  zero probability to find the system in a given hybrid state
the time discrete cell-to-cell scheme summarized ifi,V,,), though the physics of the accident transient pre-
Sec. Il.A: An inappropriately small choice ef could vents such a situation.
lead not only to slowing down the computation but also ~ We must thus conclude that the continuous cell-to-
to an erroneous representation of the dynamics. Indeedell mapping technique does not only numerically ap-
when 7 is small compared to the average sojourn timeproximate the actual problem, but it is also likely to
within cells for some dynamics, the estimated probabilimodify it, creating additional nonphysical sequences that
ity of leaving the current cell can become very small orcan be deduced from the connectivity of the transition
even vanish. The error induced by this situation doesnatrix built according to Eq(10). The implementation
not relate to the numerical inaccuracy entailed by thef the cell-to-cell transport approach we purport to do in
discretization, but it comes from an improper modelingthe case of stimulus-driven branchings should be real-
of the problem. ized with this possible side effect in mind.

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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. STIMULUS-BASED CELL PARTITIONING Besides this natural decomposition in cells, interpret-
OF THE PROCESS VARIABLES SPACE ing the dynamic evolution of the plant along an accident
o sequence as a probabilistic cell-to-cell transfer rests on
lI.A. Definition of Cells the practical knowledge on stimulus activations in the

level-2 PSA frame. Such an activation takes place with a

As mentioned in Sec. 1, partitioning the process variy . hronhability either when reaching a setpoint or
ables space in cells on which the fully dynamic equas

tions of the probability density of accident sequences arWithin a given region of phase-space. In the latter case, a
. P y aensity =q Hetailed description of the activation phenomenon inside
integrated is notonly) driven by the numerical neces-

sitv to handle the hiah dimensionality of the broblem Itthe cell is either irrelevant or inaccessible. Stimulus-
y 9 y P . JDased cells therefore appear, together with the setpoints

'Sr;gfi‘éiad motivated by observations from the I:)S'Atzorresponding to their respective borders, as the elemen-
P ' tary information on the process variables value, which

First, although the continuous evolution of proces .
variables drives the delineation process of accident sce-USt be accounted for in the sequel of the paper.

narios, the analyst is usually not interested in the de-
tailed information inx contained in the pdfr(x,i,t). l1I.B. Path of Cells
The relevant results consist instead of knowing as a func-

tion of time the probability that some process variables , . The differential nature of Eq(6) |mpI|es.|t IS re-
stricted to a Markovian branching process in the event

lie in a given region of phase-space, while evolving in ree. Releasing the Markovian assumption asks for an

given dynamics, no matter what their detailed distribu- : : i
tion inside this region is. integral formulation of the evolution equations of the

A second essential motivation of this approach isbranching process. This approach, reviewed in our com-

related to the concept of stimulus that was introduced jpanion papef,was further explored there to account for

the companion papérThis new notion comes from the the stimulus-driven case.

following observation: An event causing a branching in, 1 1iS requires an adaptation of the way the possible
an accident sequence does not always take place instaWnamlc gyo!unons of the system can be fe'”t‘?preted as
probabilistic transfer between cells. Transition rates

taneously once its occurrence has been solicited. Th i iahbori I ded in Sec. I1.B
solicitation corresponds to the activation of a stimulus, etween neignboring cells, as propounded in Sec. 1.5,

which “triggers” the event and from which a delay has todl® no longer to be computed. They must be replaced by

elapse before its actual occurrence. Stimuli can take vaf:ansition probabilities between couples of cells on a fi-
ious forms: nite time interval, which are the fraction of trajectories

connecting points inside these two cells, while evolving
« It can correspond to the crossing of a setpoint asaccording to a given dynamics.

sociated with the actuation of a contfpfotection In order to perform the integration of the evolution
device; this threshold divides the process vari-equations deduced in Ref. 4 on the stimulus-based cells
ables space into two regions. in a coherent fashion with the conclusion of Sec. Il A, it

+ It can be defined by a safety limit, separating thel = 12 SRS T8 T8 BCECe TR e e
absorbing failure zone from the safe conditions. 9 '

guently, we can writ&

* The entry in a domain where ignition conditions
are satisfied is another example of stimulus acti-
vation, inducing again a two-region partition of Hm(U)fo(X)S(X_ gi (t, ) dx
phase-space.

« An operator will diagnose that lishe has a given = Hn(0)H(Gi (1, 0))
action to take when process variables lie in spe-

cific regions of phase-space. ~ o da
: : = Hm(u)f H(gi(t,0))
» another stimulus corresponds to a component fail- Vi m(Vin)
ure, taking effect with no delay.
. = Hm(0) T (i, 1) . (12

All these examples but the last one induce a partiA slight difference between E¢12) and Eq.(2) can be
tion of the process variables space. A process-baseaibservedT, (i, t) clearly stands for the fraction of pro-
definition of cells is thereby obtained by taking the cess evolutions in dynamic¢swhich are initiated within
intersection of all these stimuli-dependent regions. Thigell V,,, and end up within cel\/, after a timet.
partition can be refined, e.g., to account for criteria  Yet, this quantity possibly sums up contributions from
used to merge scenarios in plant damage states or acdifferent situations. To understand this point, one can
dent progression bins. look at Fig. 1.

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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/ ¢ ¢
c1
n / p L n p
m T m A
c2

Fig. 1. Examples of paths of cells.

Two evolutions in the current dynamicsind on the T (i, t) can thus be used to weigh the different scenar-
same time intervat are represented. Both originate inios, which appear more naturally in this discretization
cell Vy,and reach celN/,. Yet, if these evolutions are now while they were absent in the schemes presented in Sec. Il.
considered in terms of transitions between cells, one ofhe actual estimation ofiS. (i, t), which is of course not
them follows a patle,, made up of cell&,, Vi, V,, and  performed based on E¢L2), is explained in Sec. V.

Ve, while the second one is discretized along path-
Vi, Vi, Vo, Ve I stimuli can be activated at each border

between cells or inside each_cell visited, the possib_ilities IV. CELL-TO-CELL SCHEMES EOR
for the system to branch out ofre different, depending STIMULUS-DRIVEN

on which path will be actually followed. Indeed, assum- BRANCHING PROCESSES
ing stimuli can be activated within cells or at their bor-

ders, the way events associated with these stimuli are in IV.A. Semi-Markov Case
competition is totally different along pathg and c,.

Therefore, the total fractiof, (i, t) of deterministic tra- IV.A 1. Continuous Model

jectories in dynamic$ connecting cells/,, andV, in a

time t should not be used globally. This fraction should  Accounting for stimulus activations and delays in
instead be particularized to each path of cellalong  the equations modeling the possible branchings between
which the system can evolve between these two cells igifferent dynamics can be done first with the following
this time interval; the corresponding quantity, denotechssumption: Once an event takes place and a new dy-

Trre(i, 1), is such that namics is entered, all stimuli that had been activated but
. o whose delays were not fully elapsed are disactivated. In
Tme (i, 1) = gTrm?("t) : (13 terms of the stochastic process, this amounts to saying

that the entry in a new dynamics is a regeneration point
We can also notice that the different pathsorrespond and the branching process is semi-Markovian.
to mutually exclusive situations, which can therefore be ~ We showed in our companion paper that with this
treated independently. The so-interpreted probabilitieassumption, the ingoing densi@/(%,i,t) in configura-
tioni at pointx is the solution of

CARIEDID dedU[W(U,J,T)5(T) +¢(0,],7]8(X— g (t—7,0)g5 (t—7;0) , (14)

F j=i Yo
whereqf (t; 0) is the probability per unit time that the event induced by stimiwsill cause a change of dynamics
fromj toi, at timet after entering dynamigsat pointa. It can be expressed according to

q; (t;0) = f fiF(r;Whf(t— 76 (r,0)dr [] {1—f dt’f dr fiS(mWhP’ — 7,Gi(7,@) | (15

G#F

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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wheref;F(t;0) is the probability density functiofpdf)  As for Eq.(16), after integration on ceN/,, it becomes
of the activation time of stimulu§ in dynamicsi en- .

tered ati andhf (t; 0) is the probability per unit time of Dy f . :

a delayt between the activation d¥ at pointt and the me(i,0) o dr % [7m(i, 1)8(7) + (i, 7)]
occurrence of the event causing the transitien j [the

pdf of the delay associated with tfeinduced event out XD T, t— )P, t—7) , (21)
of i beinghf(t;0) = Ej hi(t;0)]. ceC {m, ¢}

The ingoing density is related to the probability den- o ) L .
sity through wherePgy (i, t) is the survival probability in dynamids

for a system evolution between cellg andV, alongside

t . .. . .
e _ . . pathc. Since this implies that the system has “survived”
7(X0,1) = fo dTJdu[W(u"’T)S(T) +e(0i,7)] all stimulus-based events, we can write
X8(X—g(t—r7,0)-1-P((t—70), Pee(i,t) = [T PReGLT) . (22
F
(16)

The expression of each factor in the latter probabil-
ity can be built by examining on a step-by-step basis
along pattc the different possibilities of activation &f.

t We will treat the example of the path= {Vin, Vi, Vi, Ve, Vs}
P(tm)=2>2> J qf (r;0)dr . (17)  given abovesee Fig. 1, as these particular results can
Fizi o be generalized to any path. Note that we have added a
A backward formulation of the problem, based on con<ell Vs to the path given in Fig. 1 in order to model the
ditional probability densities, can also be used. Its discompetition between the occurrence of thenduced

crete cell-to-cell counterpart is provided in the Appendix event inside celV, and the dynamic drift toward the
next cellVsin configurationi along pathc.

IV.A.2. Cell-to-Cell Transport Approach We first assume that average sojourn times in the dif-
) ) . ferent cells belonging to pathcan be considered. Lk,
Let us introduce the following quantities: be the average time spent in c&}, before reaching its
border with cellV,, along patttin dynamics (this dou-
oe(i,t) = ng()'()go()'(, i,t)dx (18)  ble dependence has been skipped in the notation for the
sake of clarity. We also introducénp, tme, andty,s, total
and sojourntimes along pattbetween the borders of the cells
referenced as indexes. Wequst hiye< tandt <t,sto
. N _ ensure a positive value @;°(i, t). This should be im-
me(i,t) = fo(X)W(X"’t)dX ' (19 piicitly accounted for in the definition oF S, i, t).
Let v, denote the probability of activation of stim-
In order to perform the integration of Eq4d.4) and(16)  ulusF within cell V,, in configurationi. The activation
on cellV, we replacd ...dawith >, [...Hn(0) dd. We  time of F within a cell is assumed uniformly distributed
then obtain for the integration of the Dirac peaks on celbn the sojourn time in this cell. In order to account for
V. the result expressed in E@.2). Moreover, taking into  the possibility of activation at a setpoint, we also define
account the different paths between two cells, we obtaiw ., as the probability of activating: in dynamicsi

where the probability - P;(t;0) to survive a timet in
dynamicsi entered ati is written

from Eq.(14) while crossing the border between cells andV,.
¢ The expression ofP5<(i,t) is established as fol-
ei)=23> > f dr TS (j,t—7) lows. If F is activated in the first cell, the system sur-
F i#i m ce¢ime Jo vives in configuration only if the corresponding change

) . e of dynamics is delayed afterlf it is not activated in the
X [mm(J,7)8(7) + em(J, )i “(t —7,m) . first cell, it can be activated at the first setpoint, but the
(20) delay up to the occurrence of the transition must prevent
a change of dynamics to occur beforeand so on.

where Therefore,
Ci{im €} = set of all paths_ of cells betweafh, and _ ton 1
V, in dynamicsj PLEGL L) = vfmf — (1—Hf(t—7;m))dr
g °(t,m) = probability per unit time that the transi- om
tion j — i will follow the activation of + (1= of ) W (1 = HF (t = ton mn)
F along pathc given dynamicyg was .
entered inside ceW,,. + (1= Wmn)-al, (23

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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whereHF (t;m) is the cumulative density function of the delay if stimulss activated in celV,, in dynamicsi, @
while HF (t; mn) corresponds to the same probability, given the activation occurring at the border betwean,cells
andV,. Factora appearing in Eq(23) stands for the survival probability in dynamicence stimulug- has not been
activated in celV,, nor at its border with ceN/,. In the particular case we treat, it is written by recurrence as follows:

T O RS d
a=uv, P (1-H"(t—7;n))dr
t, mp mn

mn

+(1- Ui',:n)[Wi',:np(l —H (t— tmps NP) + (1 — Wi',:np) ‘B, (24)

T I R
B =vip (1-H (t=m7p)dr
t 1:m(,_tmp

mp

+ (1= o) W pe (1= HE(t = toe; p€) + (1= W pe)-v] (25
and
t 1 t—t
Y = UF{J (1 - HiF(t - 'T,e)) dT + (1 - Ui"zg' me > . (26)
tme tns = tme ths— tme

It must be underlined that in practice, the expressioRif(i, t) is likely to reduce to a much more compact form
because of the physical impossibility of having stimufuactivated in some cells and at some setpoints. Indeed, a
stimulus will correspond in general to one setpoint or several cells.

The developments above rest on the assumption that average vatpggaf, tm¢, andtnscan be used. Actually,
this might not be appropriate as it reduces the possible evolutions of the system alondggatie single determin-
istic time sequence. Considering that these sojourn times are distributed according to a four-variate disgibution
(since these times are not independgne must understand E(R3) as being conditional t,n, tmp, tme, andt,s. The
same is true foll 5 (i,t). Equation(21) should then make use of

Trrcw(l ’ t),Pr%(’(l ’ t) = f e _I;m(<t<tm5 gic(tmnv tmpa tm(/,; tms)Tr‘r(Erf(i ’ t; tmn’ tmpv tme, tms)

T <tmp<tme
X H Prlrzwc(h t; tmna tmp’ tm€1 tms) dtmn dtmp dtme dtms . (27)
F

We will discuss in Sec. V how to practically determine and use these distribigfons

Let us express now the probability per unit time of a transition between dynaraiedj after a timet, while
having been transported from c®f} to cell V,, following an event triggered by stimull#s From Eqs(15) and(17),
we can write

gre(t,m) = p&e(i = j,0) [T PSSG,t) (28)

G#F

wherepq£(i — j, t) denotes the same probability per unit timeg@$(t, m) but when considering only stimulu It
is built on Eq.(23) by deriving it and selecting the transition to dynamjcs

tmn 1
pr':{ec(i—)j,t):vi',:mf t—hi'j:(t—T;m)dT
o

+ (1 - Ui',:m) |:Wi',:mnhi'j:(t — tmns mn) + (1 - Wi',:mn)'(_d)] ) (29)
where along the particular pathtaken as example, we have

tmp 1
(—a&) = vfnf P—— hi(t—7;n)dr
t m

+ (l - Ui',:n)[wi',:nphi'j:(t - tmp; np) + (1 - Wi',:np) (_B)] ’ (30)
(—B) = vfpf PP hif(t—7;p) dr
tmp te — tmp

+ (L= of ) (W pe hf (=t pO) + (1= W) - (=9)] D
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and

t
1

(=y) = Uifef
tme tms —

The distribution otmn, tmp, tme, @andt,scan be accounted
for just as before.

It is easily seen that the adaptation of E¢23)
through (26), and (29) through(32), respectively, to a
general patlt = {Vi, =V, ,\V,, ..V, Ve =V, ,Vs} is
straightforward.

hi(t—7;¢)dr . (32

e

IV.B. General Non-Markov Case

IV.B.1. Continuous Model

Page: 9
9
and
e (R LT, Tavry, A +{F))
= deS(Y(- g]'(t_T,U))ij*(t;T,T,U,?A,A)
X [W(Ulj17)6(7)6.,4,® + @in(chjy'r,?A;A)]
+ >, | dus(x— g(t—76,0))
GeA
X pF(ty7e,7,0,74,4) - @6 (0, ], 76,7, 74, 4) . (34)

Note that in the second term on the right side of &3),

a Dirac peak onr*, taken equal to the last activation
time 7g, is not directly integrated. Indeed, stimul@
may or may not belong to set. Only in the negative
case will7¢ be a dummy variable for integratiofac-

Releasing the assumption of disactivation of all ac-counted for in7 4, 4).

tivated stimuli once a change of dynamics occurs leads

In these expressions, we have made use of the fol-

to a non-Markov modeling based on two ingoinglowing quantities:

densitie$:

* oin(X,],1,74,.A): density of entering dynamids
at pointx and timet, with a setA of stimuli re-
maining activatedr 4 denotes the activation times
of the stimuli belonging to4

* or(X,],t,7,74,.A): density of activating stimulus
F in dynamicsj at (X, t), this configuration be-
ing entered at, this activation resulting in a set
A of activated stimuli(this density is nonzero if
T = t)

They were shown to obey the following evolution
equations:

qun()_(ljvty?A!A)

=2 2 2> |dd

A'DAFEA 1#]

t
de
XII d?Af/A8()_(_gi(t_T,u))
X pi'j:(t;T!Tvuv?A”A,)'(pin(Ulile?A’!A,)
X 8 (A — A)

PSS S fdufotdq-*f;dr

A'DAFeEA i#] GEA’
T* T
X f f dTA'/AS()_(_Gi(t_TG1U))
) o

X pi'j:(t;TG,T,U,?A',A’)'QDG(U,i,TG,T,?Ar,A,)

X &F (A = A)S(m* — 76) (33

NUCLEAR SCIENCE AND ENGINEERING VOL. 150

« 8f (A" — A) embodies the rules of disactivation
of the stimuli belonging tod’ due to thé~-induced
transitioni — j, with only those inA remaining
activated in the new dynamics.

 pi(t;7%,7,0%74,A) dt is the probability that the
F-induced transitioi — | takes place irft,t +
dt], given dynamics was entered at and the last
event occurred ato* 7*), with a setA of stimuli
activated at 4 resulting from it:

pf(t; 757,074, A) dt
B hf (t — 7,07 — 7¢) dt
1—HF(r* — 0|7 — 7¢)

1-HCe(t— 70| — 1)

X =
Gl;[A 1-HS8(r* — 70|t — 7¢)
G#F
1-FA(t—7;0)
X , 35
Hl;[Al_FiH(T*_T;U) 39

whered* = g, (7* — 7,0).

o pF*(t;r* 7,0% 74, A) dtis the probability of acti-
vating F in dynamicsi in [t,t + dt], given the
same conditions as before:

pre(t 7%, 7,0% 74, A) dt
fiF(t_T;U) dt 1- F,H(t_’T,U)

- 1_FiF(T*_T;U).HEA 1_FiH(’T*_T;U)
H#F

1- AC(t— ralr —
< 11 ~(,3(* T _|7' TG) .
cea 1= HE(r* — ;0|7 — 76)

Tilded distributionsHF (t; a| r — ) for the delays were
introduced. They are conditioned by the probability of a
delay larger tham — 7¢ if F was activated atr < 7, the
time of entry in configuration.

(36)

JUNE 2005
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The probability density then is written
t T* T>‘r‘ ’T*
T(X0,tA) = fdl]*f dT*f drf f d7,8(X— g (t—7%50%)(1— Pi(t;7% 7,05 74,A))

x [[w(u,j,T)s(T)aA,@ + (@1, 7 T TS — D+ S o (07,77, 74, A)S (7 — TF)] (37)

FeA
with

1—HC(t—ra|r — 1) 1-FH(t—r0
1_ Pi t;T*,T,u*,’? ,A = ~ X .
( ) GI;IAl—HiG(T*—TJWT_TG) HI;IAl_FiH(T*—ﬂU)

(38)

IV.B.2. Cell-to-Cell Transport Approach

The discrete forms of Eq$33) and(34) rest on the
definition of the following densities:

ferred to as a place. This now forces us to understand a
path of cells in a broader way, including their common
borders as well. Therefore, the fraction of dynamic trajec-
e oin(€,],1,74,A): density of entering dynamigs toriesTg(i,t) connectingvy,, andV, along pathc in dy-
in cell V, and timet, with a setA of stimuli acti- namics hasto be seen between places, and not cells only.
vated at times 4 An additional dependence @t onimy, a vector con-

e or(L,j,t,m, 774, M4 A): density of activating taining the activation pI_aces ofall stim@ie Aandsuch
stimuiusF in dynamicsj at “place”L and timet,  hal7e > 7, has been introduced. Indeed, if stimul@s
given this configuratiorj was entered in cely, ~Wasactivated attimeg < 7, the time of entry in dynam-
and at timer, this activation resulting in a set of icsi, the place wher& was activated has no dlrec_t influ-
stimuli activated at times , and placesn . This ence afterr because of the change of dynamics that
density will be nonzero it =t andme = L. occurred there. There is therefore no dependena@on

in ¢in. Whenrg > 7, however, the corresponding activa-
Note that if the first quantity directly comes from the tion place is a constraint for thgath of placeshat can be
integration on celV, of its correspondent in the continu- followed in dynamics. These places should then be kept
ous process variables space, the situation is slightly difin memory together with the activation times. When con-
ferent for the second one. Indeed, in the definition of thesidering the probability of a next event, either a change of
discretepr, we have added to the entry timen the cur-  dynamics or an additional stimulus activation, the places
rent configuratiorj the cellV,,, in which this event took of activation of these stimuli define which path of cells
place. This information is essential to restrict the paths ofan be followed in a coherent way with the chronological
cells reaching. to those originating iv,,,, thereby avoid-  series of activation times. Vectans, and7 4 will thus be

ing nonphysical scenaridsee Sec. Il.@C Moreover, the used to limit the study to those paths of callthat are

concept of “place” was introduced in the foregoing sec+elevant in modeling the possible discrete dynamic evo-

ond bulleted item. As we assume a stimulus can be actlutions of the system in a given state. We will then denote
vated at a border between cells or inside a cell, we mushe dependence of the delay distributions on the process
account for these two kinds of situations in the ingoingvariables as a dependence on the current path

density of stimulus activation. Any of this case isthenre-  The cell-to-cell transport equation associated with

Eq. (33) then is written

t T* T*
ein(€,], 674, A) = 2 E dT*f f d?A'/AEQDin(m,i,T*,?A’.A’) E Te(i,t—7%)
A'DAi#] Yo o o m ceC {m, ¢}
X 2 ﬁi'j:(t—T*,C\T*—T,:)- H (1-HS(t—7%c|r* — 15))- H R':;(;C(i,th*,m,T*)oBif(A—)A’)

FeA' GeA’ HeA’
G#F

t Ty T3 T3
+ E 2 E JdTJJ de J d’?A’/(.A*{J})EEQDJ(vainJvm,TV?A’yﬁ)].A’!-A/)
o o o m my

A'DAi#] JEA' YO

ﬁ,':t_ ,C -
X D TS i t—r) S i(t=7.clr — )

cEC{m, M, 740, €} EcA’ 1- |:ii':('rJ - 7'1C|7' - TF)

1—HC{t—7,¢c|lr— 75)
X = . RS (i, t|7,m7;)-85 (A" — A) . 39
Gg,l—HiG(rJ—r,c\r—rG) Hg’ (it )84 ( ) (39
G+F

Let us comment on E439).
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It should be observed that this tin&{m, M4, 74, €} As for the probability to find the system in cell,
still denotes the set of all paths of cells connectifjg and dynamics, it is easily obtained in terms of ingoing
andV, in dynamicsi, but with the additional condition densities according to
of including placesny, where the previous activations
took place, in the chronological order given By. Fol- ) t T* ™
lowing the remark above E¢39), the possible paths are 7¢(i,t;A) = f dT*f f d74
thus restricted to those containing the places of activa- © © ©
tion of stimuli having been activated between the entry .
in configurationi and the last activation that took place X 2 [6428(T4—0)8(7")mm(i, 7*)
at Vi,,. Doing so, we avoid considering paths that, de- m
spite connecting/,,, andV,, could not have originated

in cell V. This strongly limits the number of terms to be + @in(M,i, 77,74, A)]
considered in practice when dealing with the multiple
sumXn, on all components of this vector. X > TS, t—7%)
Equation(39) also makes use qRT;S(i, t|7,m, %), cEC{m, ¢}
the conditional probability that stimulu§ is not acti-
vated before timd, on the section of patle between < H (1— AS(t— r%¢|r* — 70))
placeL and cellV,, in dynamicsi, provided the latter GEA
was entered in celN,, at time 7, given G was not acti-
vated when the last event took place-ratBefore devel- H,c/: . *
oping this expression, we introduce the corresponding % HI;IA R (7, m,77)
pdf of activation
G t TE TE TE R
o ‘ dR7S(i, t|r,m7") + > dT,:f drf J d7 4k
e (I,t|T,m,T*):— FeA Yo o o o
dt

in order to write the cell-to-cell process associated with X 2 > or(Me, i, 70, m 7,74, My, A)
Eq. (34): m My
e (€], tm 7, Tuqmy, Mygey, A +{F)) X > T e(i,t—7¢)

ceC{m,my, 74, €}

=[04gd(T)mm(},7) + @in(M, ], 7,74, A)]
1—HSé(t—r,c|lt —75)

X TS (j,t—7)-rof(), tlr,m, X N
Cecjz{m’g} mf(J T) me(J |T T) Gl;[A 1_HiG(TF_7'vC|T_TG)

x IT ReCi tim,m7) x TT RES Gt 7, mme) (41)
Heg A He&A
H#F

~ Let us now give the expression &F,°(i, t|7,m,7*)

X [T @=HE(t =7l —75)) and r$°(i,t|7,m,7*) using the same notations as in

GeA Sec. IV.A. Assume thus that= {Vi, = V,,V,,...L...

Vi, Ve = Vi, V) is the full path betweeV,, andV,,
which is as before completed by c#. We should first
observe that our results will depend on the naturé of
% > Te (it —1)) and¢, i.e., if they correspond to cells or borders.
my¢(Js J The probability of nonactivation of stimulu at

time t is the product of the individual probabilities of
nonactivation in the cells belonging to patand at their
borders. The same is true for the conditioning probabil-

+ E QDJ(mJ!leJum,T,?A,mA,A)
JeA

CEC{mM, My, 74, ¢}

XreS(j,tlm,mry) [T RS (i tlm,m7y)
HEA

HAF ity of not being activated up to pladeat time7*. There-
~c fore, all factors of these probabilities upltavill disappear
1 1-HS(t—7,c|lr —75) (40) in the conditional probabilityR®,(i, t|7,m,7*), possi-

bly but the one corresponding toif it is a cell. Indeed,
in this casg(L =V, ), the probability of not being acti-
WhenF is activated, vectom  is updated wittm: = ¢,  vated in this cell before* is (1 — v, -[(7* — 1) — tmn,1/
and vectorr 4 is updated withrg = t. (tmn,., — tmn,)) SiNCE We have + ty, = 7" =7+t ..

Gea 1— |:'iG(TJ —rclt—15)

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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Then, ifL # €, we can write If € denotes the borddr, = L,, we obtain
1-08 r&Ci, tlr, mr*) = REC (i,t|r,mr*)ws
R(E;?C(i,th', m,7%) = - b t Le ( | ) L”r—l( | ) M1l
1-pe T "t X 8(t— 17— tmg) - 47)

tmr\a+1 - tmrb
The Dirac peak in Eq47) actually comes from the
X (1=wS,n.,,) derivation of the implicit Heaviside stepfunction bm
the expression oR.

r—1
X L 111(1 — vin)- (1= Wiy nj+1)] IV.C. Accounting for Random Shocks
= (7 + ty) In the first paper of this seridsye have modeled
% (1 — G, —W> (42)  the possibility of an instantaneous modification of some
’ tns — tme process variables value when a change of dynamics oc-
curs. Such a situation can for instance correspond to the
iff Veis acell andr + ty <t <7 + tps If index € modeling of a combustion, which has a much smaller
denotes the borddr, between cellsv,, , andV,, the duration than the other characteristic times of the tran-
last factor after the brackets in E@2) must be skipped. sient and which can therefore be considered instantaneous.

If L = ¢, Eq.(42) reduces to The magnitude of such a jump in the process vari-
ables is random; the valuge" of the process variables
1— G . (t=7) — tan, after a transition between dynamicandi is written
I, N,
»Ha § _ t
RS, t 7, m r*) = : . | ™ @3 %"= §i(%,2) (48)
75 = 7) — ton,
1-vS —— wherex~ are the process variables before the transition

tmnsa ~ o, andzis a vector of shock variables, distributed accord-

ing to the pdfe; (2). Going back to the combustion ex-
ample mentioned above, a possible shock variable is the
burn completeness.

r—1 In order to integrate this feature in our cell-to-cell
RES(i t|r,m ) = [ IT @—0v8) (1—ws, n,-ﬂ)] framework and to obtain the adaptation of E2Q) [or

j=a+1 Eq.(39) in the non-Markov cagewe introduce the prob-
ability J; (n — €|2) that the transitiorj — i will be

% (l _ UiGn('t (1 + tm€)> (44) associated with a jump between cellsandV,, givenz

Now, let us consider the second case wHeig the
border between cellg, andV,_ ,; we have

tms — tme is the value of the shock variables. We observe therefore
that the deterministic jumggiven z) determined by
if ¢ stands for the ceN, =V, , and Eqg. (48) in the continuous model is again interpreted in
. the cell-to-cell transport theory as a transfer probability
: - between cells.
G,c HY\ _ ,G ). — WG .
R t|r,m, %) = L=1a_l+1(l vin)- (L= Wi, nm)] Equation(20) then becomes

49 Li0=S33% S [Tt
F j m n ceG{mn}t Yo

if € denotes the bordér, betweenv,, . andV, .

Finally, we give the expression of; (i, t|7,m,7*)

in the different possible cases fItands for the ceV,, , X <iji (n—€[2) ;i (2) d2>
we have
r&e(, tlr,mr*) = R(E',’_f(i,r + toelT, M 7%) X [mm(j,7)8(7) + om(j, D]gl¢(t —7,m) .

X H(t =7 = to ) H(T + tpg— 1) (49)

G Of course, the integration oncould easily be re-
% vi e (46) placed with a sum o cells on which these shock vari-
tms— tme ables would be discretized as well.
The same kind of adaptation is straightforward in

wherelL, is the border betwee|, . andV, . Eqgs.(39) and(40) in the non-Markov case.
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V. PRACTICAL IMPLEMENTATION after completing all the runs originating in c&f},
are to be considered when estimating the transfer
Considering the evolution equations between hybrid probabilities of typeTr,(j, t) at a second stage of
states that were deduced in Sec. IV.B.2, we observe the  preprocessing; only those dynamicsvhere the
following: system can undergo a transition to from dynamics

o o o i in cell V, are then to be investigated.
» The activation probabilities of stimuli within cells

and at setpoints are data for the problem. As for the pdfg?, it can be assessed from the runs
e . . we have to perform to obtain the transfer probabilities
e The dlst(lbut_lons of the time delays between aSt'an%J(i,t). Indeed, in each rurt,, is the time at which
ulus activation and the occurrence of the evenge)|y is entered. Collecting this information in all runs
should not be more difficult to assess in the disyerformed from the hybrid staté,V,,) provides a his-
crete cell-to-cell scheme than in the continuou ogram from which the distributiog®(t,,) can be ob-
case. tained after proper normalization. It can be noticed that
« Transfer probabilitiesT,S(i,t) in dynamicsi  using such a normalized histogram is more appropriate
along pathc cannot be computed as such fromthan choosing a specific type of distribution, such as
Eq. (12); they have to be approximated from aa simple uniform law. Indeed, we have for instance
limited number of dynamic runs. The same con-tmp = tmn + Tnp, Wherer,, is the sojourn time in cel/,
clusion is true for the pdf¢ of the sojourn times up to the border o¥, andgF(ty,) is the convolution of
in the different cells of the path. g¢(tmn) and the pdf ofr,,. Yet, uniform densities are
] N not conjugate, and this choice of distribution would im-
In order to estimate these two sets of quantities, Wg|y a strong assumption on the nature of the distribu-
define, such as in the first time discrete cell-to-cell techtjon of 7,,.
nique (see Sec. Il.A a finer grid inside each cell. Yet, We can also note that such a histogram, before nor-
the way we suggest to use it is somehow different.  malization, can be used in the non-Markov case as well.
The stimulus-based theory developed in Ref. 4 aim§ must then be averaged to provide the transfer proba-

at dealing with level-2 PSA scenarios. Therefore, thayjlity between cellV,, and the setpoint at the border be-
corresponding accident sequences are not likely to digore enteringy, .

play cycles of transitions between configurations; rather,
they present a one-directional evolution toward an end
state, be it a failure event or a safe situation. For this
reason, there is no need to preprocess transfer probabil-
ities for each and every couple of cells, in all possible . . : .
dynamics, since some regions of phase-space will never !N this second paper, the issue of practically imple-
be visited in some dynamics. Moreover, the risk of cre/€nting the concept of stimulus-driven branchings in
ating nonphysical scenarios through the discretizatioff'€ construction of an accident progression event tree
process, which was mentioned in Sec. II.C, should b&/as addressed. We propounded to resort to an inter-
reduced as much as possible. pretation of the dynamic evolution of the plant in the

In order to account for these characteristics of th$iﬁerent configurations in which it can lie as a proba-

VI. CONCLUSIONS

problem, the following scheme is propounded, starting!liStic transfer between cells based on the partition of

only from those cell3/;, in which the system can ini- he process variables space entailed by the definition of

tially lie and in those dynamicsthat can be entered at the stimuli. .

the beginning of the transient: _ First, previous works on cell-to-cell mapping ap-
plied to dynamic reliability problems were reviewed. This

« From the center of each subcell belonging to theallowed us to pinpoint new challenges to be taken up in

fine grid within cell V,,,, the continuous process our case, namely, the discretization of integral equations

variables evolution in dynamidsis computed. instead of partial differential equations and the need to
release the Markovian assumption. Above this, a deeper
look at these works highlighted how the discretization of
the dynamics could affect the problem itself by creating
nonphysical situations with a nonzero probability.

The notion of path of cells helped us to bring a first
solution to the abovementioned drawback. These mutu-
ally exclusive paths along which two cells can be con-
nected alongside the same dynamics are an essential part
of the modeling of competing events, as stimuli are ac-
» The subcells o¥, visited by the current trajectory tivated in a possibly different order depending on the

are marked; only those subcells that are markegath considered. This concept was included in the

» Each cellV, crossed by this trajectory is checked
to belong to or not belong to an already identified
path of cellsc. The time interval during which the
system lies in cellV, leads to a crenellation-
shaped estimation of.(i,t) for this run; these
individual estimations will be averaged on all runs
initiated in subcells o¥,, to provide the approxi-
mated value off (i, t).
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discrete form of both semi-Markov and non-Markov sets of evolution equations for the ingoing and probability
densities describing the branching process. As a result, a sound methodological approach to level-2 PSA applications,
including the effect of the dynamics on the generation of scenarios, is thus propounded. Considerations on how to
implement practically the discrete cell-to-cell scheme were then given.

Ongoing work devoted to the application of this method to large-sized applications is now needed. Its use as a
basis for devising numerical schemes to solve the quantitative problem of estimating the frequency of accident
sequences should also be considered. Accordingly, future developments should also investigate if the present parti-
tion in cells based on the regions defined by the stimuli in phase-space is sufficiently refined in practice.

APPENDIX

BACKWARD TREATMENT

One of the drawbacks of the forward treatment presented in Sec. IV is the need to resort to a coupled system of
equationgfor the ingoing density and for the probability dengity model the problem and to give allowance to the
entry in a new dynamics in a semi-Markovian assumption. The backward formulation of the problem, which refers to
the conditional probability density, contains similar information in one equation, provided the conditioning coordi-
nates correspond to the entry in a new dynamics.

We therefore present in this Appendix the cell-to-cell form of the backward equations that were also given in our
companion paper.

A.l. SEMI-MARKOV CASE

Using Egs.(15) and(17), we obtain for the conditional probability density
77()_(! i-t|)_(0: k: to) = 8ik(1 - I:)i (t - to; )_(0))5()_( - gi (t - to: )_(0))

+ 2> | dhi(r — to; Ro) (X, i, t| Ge(T — to, Ro), j,7) AT . (A.1)

j#k F to

Let (i, t|m, k) be the probability that the system lies in céllwhile evolving according to dynamidsa timet
after entering dynamick in cell V,,,. Using the notations introduced in Eq20), (21), and(22), we obtain as the
result of the discretization

m(i,t|m,k>=6ikPm<i,t)+E§2 CE{ }fTrﬁn(k,r>qf,-'°<fr,m>m<i,t—T|n,j>dr : (A.2)
n j#k F ceC{m,n ]
where
Pre(iit) = X The(i,)PS(i,t) . (A.3)
ceCi{m, €}

A.ll. GENERAL NON-MARKOV CASE

This time, the probability density is taken conditional to a last event having taken pléagé =t) and having
resulted in a se#d of activated stimuli in dynamick entered at. We have

(X0, 1|05 K 757,74, A)

=0 0(X— g (t—770")(A— P (t;7%,7,0% 74, A))

t
+ E J dre m(X,1,t|G(7e — 75,0%),K, 76,7, Faricy A +{G)) - p&* (16577, 7,0%, 7 4, A)
GgA Jr*

GeA

t
+Ezf ds7(%,i,t|Ge(s— 7%0%),},5,5 74, A) X, pe(s757,057, A)SS(A—> A) . (Ad)
a o e
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In order to discard nonphysical system evolutions, the conditional probability associated with the cell-to-cell
transfer process refers to the céll where dynamic& was entered, as well as to pladag where the activations took
place. Then, using the notations defined in Sec. IV.B,

7Tp(|,t| L,k 7%, m,7—':41 mA’A)

1-HF(t—7¢c|t—7¢)

=6ik' 2 TLCg(i,t_T*) H Rf}f(i,th,m,T*)-H

ceC, {mma, 7a, €} GéAa fea L—H (7" — 1;c|7 — 7¢)
t

+ E 2 dTG E TLcmG(k!TG - T*) z rLGI’T"IZ(leG|T!maT*)‘ H Rlﬂhse(k!TG|Tv mvT*)

GEgAmg Jr* cEC, {m, My, 74, Mg} Gg A H& A

H#G
1—HE(s* — ¢t — 7¢) )

X ~ % 'WC(Ivt‘vakyTG1Tum!7_:A G!r_ﬁA G1A+{G})

,:l;[A 1-Hf(7* —7;¢c|]7 — 7¢) HE Het

t
+ f ds> X TSks—7)- [T -REs(ks|7,m7")
7" n ceC{m, My, 74,0} F&A

o3y Mo mdr o) 1- Af(s—7icl7 — 1)

7 Geal— HE(r* — 7iclt — 76) nea 1— HE (7% — 7i¢l7 — )

H#G

X > 8S(A - A')-me(i,t|nj,5,8n,74,0,4") . (A.5)
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