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Abstract – In the first paper of this series, we presented an extension of the classical theory of dynamic
reliability in which the actual occurrence of an event causing a change in the system dynamics is possibly
delayed. The concept of stimulus activation, which triggers the realization of an event after a distributed
time delay, was introduced. This gives a new understanding of competing events in the sequence delinea-
tion process.

In the context of the level-2 probabilistic safety analysis (PSA), the information on stimulus activation
mainly consists of regions of the process variables space where the activation can occur with a given
probability. The evolution equations of the extended theory of probabilistic dynamics are therefore par-
ticularized to a transport process between discrete cells defined in phase-space on this basis. Doing so, an
integrated and coherent approach to level-2 PSA problems is propounded. This amounts to including the
stimulus concept and the associated stochastic delays discussed in the first paper in the frame of a
cell-to-cell transport process.

In addition, this discrete model provides a theoretical basis for the definition of appropriate numer-
ical schemes for integrated level-2 PSA applications.

I. INTRODUCTION

Integrating the dynamic behavior of a plant in tran-
sient conditions in the delineation of accident sequences
can be a major concern in the probabilistic safety analy-
sis~PSA! studies of nuclear power plants when hardware–
software–process variable–human interaction~or any
combination! is involved. Such a circumstance is often
met in level-2 analyses. The theory of probabilistic dy-
namics1 offers a framework in which the competition
between events defining possible PSA headers is driven
by the thermohydraulic process evolution in accident de-

velopment. This allows potentially an automatic gener-
ation of accident scenarios.2 Such an approach has been
successfully applied to the construction of setpoint-
based event trees, characteristic of level-1 PSA studies.3

In the first paper of this series,4 the assumption of
instantaneous change in the system dynamics when, e.g.,
a setpoint is crossed has been released. This has given
rise to an extended methodology in which the time to
occurrence of an event is seen as the sum of two possi-
bly random times: the time to activation of a stimulus
and the elapsing of a delay. The general term of stimu-
lus covers any situation that “triggers” an event, be it
the entry in a new system configuration, the crossing of
a setpoint, or the satisfaction of combustion criteria.*E-mail: pelabeau@ulb.ac.be
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Integral transportlike equations were derived from this
assumption in two modeling cases: Either all activated
stimuli are disactivated as soon as an event takes place,
or some of them can remain activated in the new con-
figuration that the system has entered after the event
occurrence. In terms of stochastic processes, the first
situation corresponds to a semi-Markov evolution of
the branching process, where the system is regenerated
at the beginning of a new branch, while the second falls
under the umbrella of non-Markov modeling since the
past history of the system is likely to affect its future
evolution.

Yet, the mathematical problem defined in this way
is highly dimensional and hardly tractable when taken
to its full extent and applied to industrial cases. How-
ever, the full-scale theory developed in the companion
paper4 gives the basis for the deduction of a scheme
adapted to the level-2 PSA constraints. The method we
present in this paper is inspired by the following obser-
vation5: Large cells defined in the process variables
space naturally arise in the classical PSA approach in
the characterization of the undesired, damage situa-
tions, like core melt or containment rupture. Moreover,
PSA practitioners are not interested in the detailed de-
pendence on the process variables of the probability of
a given undesired event but in the probability of this
event occurring in specific regions of the process vari-
ables space. When considering level-2 PSA problems,
stimuli are mainly associated with setpoints and events
taking place within regions of the process variables space
with known probabilities. The details of the stimulus
activation within such regions is either irrelevant or
beyond the scope of the analysis. Stimuli provide there-
fore a problem-related partition of phase-space in cells.
The branching process in the continuous event tree, which
is driven by the evolution of the continuous process
variables along the accident sequence in the full-scale
theory,4 must now be understood in the frame of a dy-
namic cell-to-cell transport theory.

Before investigating this point, it should be re-
minded that partitioning phase-space in cells is not an
innovative idea in dynamic reliability. Indeed, it was al-
ready envisioned to include setpoint-based control de-
vices in the discrete-state Markov methodology6,7 even
before the theory of probabilistic dynamics was formu-
lated. It is therefore worth examining the corresponding
techniques, not in their efficiency as numerical schemes
but in their ability to model properly the dynamic as-
pects of the problem.

Section II thus presents an overview of the pros and
cons of this pioneer approach in both its time-discrete
and continuous versions and raises issues related to the
correctness of this discretization method. Section III is
dedicated to how the partition in cells can be directly
related to the definition of the stimuli and on which basis
the cell-to-cell transport process should be considered.
Section IV presents the discretized form of the equations

given in Ref. 4 for both semi-Markov and non-Markov
cases. A practical implementation of the proposed scheme
is propounded in Sec. V. Conclusions and perspectives
are finally given.

II. OVERVIEW OF CELL-TO-CELL MAPPING
TECHNIQUES IN SYSTEM RELIABILITY

II.A. Discretization of Time
and Process Variables

Process control systems are an important part of most
industrial systems. Yet, when trying to account for their
instantaneous solicitation and action in the frame of Mar-
kovian reliability, an important problem arises: Only
pointwise actions whose agenda could be fixed at the
beginning of the analysis~e.g., inspection and mainte-
nance actions at fixed epochs! can be included in a strict
Markovian treatment. As for process control systems,
the time of their solicitation is defined by the evolution
of the process itself, in the configuration the system lies
in just before reaching the control setpoint. They cannot
be accounted for as such in a Markovian model.

A pioneer paper in dynamic reliability6 propounded
to model the dynamic behavior of the system over a time
step as a transition between two cells defined in the pro-
cess variables space. Doing so, hybrid states are defined
by the combination of a cell and a configuration of the
system components. While independently developed, this
work extended the cell-to-cell mapping concept pro-
posed in Ref. 8 to find the domains of attraction of non-
linear systems to the probabilistic analysis of systems
with stochastic configurations. Transition probabilities
between cells in a given configuration come from the
reinterpretation of the fraction of dynamic evolutions
starting from the first cell and reaching the second one
after a delay equal to the time stept of the Markov
process.

Let us summarize mathematically the main lines of
the method. A partition of the safety domainD in cells
Vm, m5 1 . . .M, is first defined

ø
m51

M

Vm 5 D , Vm ù Vn 5 B if mÞ n . ~1!

Additional cells cover the outer region ofD in the pro-
cess variables space. They are supposed to be absorbing
and are therefore called sink cells. Control setpoints
should be placed at the boundaries of cells, and not in-
side them, for a better modeling of the corresponding
transitions on demand.

The transition probabilitygmn~i,t! between cellsVm

andVn in a configurationi , in which the dynamic evolu-
tion of the process variablesSx is given by Sgi ~t, Sxo! at
time t after enteringi at Sxo is written
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gmn~i,t! 5 5
1

m~Vm!
E

Vm

Hn~ Sgi ~t, Sx!! d Sx if Vm [ D

dmn if Vm Ó D ,

~2!

wherem~Vm! is the volume of cellVm. Equation~2! makes
use ofHn~ Sx!, the characteristic function of cellVn, de-
fined by

Hn~ Sx! 5 H1 if Sx [ Vn

0 if Sx Ó Vn .
~3!

The integral in Eq.~2! over Vm is in practice approxi-
mated by ac-point quadrature with equal weighting. Then,
if c' out of thec trajectories Sgi ~t, Sx! leaving cellVm ends
up within cellVn, gmn~i,t! is estimated by the ratioc'0c.
A similar idea will be further explored in Sec. V.

Transitions between system configurations are sup-
posed to occur at the end of the time step, with a proba-
bility hij ~mr n,t! when leaving statei for statej, while
the system dynamics has moved from cellVm to cell Vn

on the time intervalt. Therefore, the transition probabil-
ity between the hybrid states~i,Vm! and~ j,Vn! is written

Igim, jn~t! 5 gmn~i,t!{hij ~mr n,t! . ~4!

Equation~4! defines the elements of a transition matrix
G. Vector Tp~t !, whose components are the probabilities
pim~t ! to be in the different hybrid states~i,Vm!, then
evolves with time according to

Tp~kt!T 5 Tp~~k 2 1!t!T{G 5 Tp~o!T{Gk . ~5!

The approach sketched above thus succeeds in express-
ing the continuous process variables evolution by tran-
sitions between discrete cells, as the system evolution is
represented by a Markov chain between hybrid states.
This approach thus appears as a discretization scheme to
obtain the probability distribution of the system lying in
a cell and in a given configuration, but it does not allow
easy identification of the scenarios leading to an un-
desired situation, with the possible sequence branchings
being hidden in the matrix of transition probabilities be-
tween hybrid states.

II.B. Time-Continuous Cell-to-Cell
Mapping Technique

Besides the size of the discrete state-space to be han-
dled when using a large number of cells, the discretiza-
tion method summarized in Sec. II.A suffers from several
other drawbacks:

• Though control setpoints are boundaries of cells,
the solicitation of process control devices takes
place at discrete time intervalskt and not at the
exact time the corresponding setpoint is reached.
To avoid the discrepancy between the real situa-
tion and the time discretization, small values oft

are necessary. But, these can lead, in the estima-
tion of the transition probabilities@see Eq.~2!# , to
a very small~or even nil! probability to leave some
cells. Besides the numerical issue of accuracy, a
modeling problem thus arises: The dynamics un-
derlying the whole process is incorrectly repre-
sented if the size of the cells is not reduced in
correspondence to the value oft.

• Transitions probabilities between system configu-
rations may depend on the value of some process
variables. Whether this dependence must be ac-
counted for inVm or in Vn in determining the prob-
abilitieshij ~mr n,t! is not obvious.

To tackle these two difficulties related to the dis-
crete nature in time of Eq.~5!, a time-continuous version
of the cell-to-cell discretization technique was propound-
ed.9 It is based on the integration over a cell of the
Chapman-Kolmogorov equation, which was deduced in
Ref. 1 to model dynamic reliability problems:

]p~ Sx, i, t !

]t
1 div~ Nfi ~ Sx!p~ Sx, i, t !!

5 2l i ~ Sx!p~ Sx, i, t ! 1 (
jÞi

p~ j r i 6 Sx!p~ Sx, j, t ! ,

~6!

where

p~ Sx, i, t ! d Sx 5 probability to find the system ind Sx
about Sx, in configurationi and at
time t

d Sx0dt 5 Nfi ~ Sx! 5 expression of the dynamics ini in
differential form@the solution of this
set of ordinary differential equa-
tions with the initial condition
Sx~0! 5 Sxo gives back Sx 5 Sgi ~t, Sxo!#

p~ j r i 6 Sx! 5 transition rate betweenj andi , given
Sx, with l i ~ Sx! 5 (jÞi p~i r j 6 Sx! [

2p~i r i 6 Sx!.

Assumingp~ Sx, i, t ! is uniformly distributed on each
cell, after integrating Eq.~6! on cellVm, we obtain

dpim~t !

dt
1 CE

Sm

Nfi ~ Sxs!{ Sn~ Sxs!p~ Sxs, i, t ! d Sxs

5 (
j

Lji
c ~m!pjm~t ! . ~7!

In Eq. ~7!, Sm is the border of cellVm, and Sn~ Sxs! is its
exterior normal, while

Lji
c ~m! 5

1

m~Vm!
E

Vm

p~ j r i 6 Sx! d Sx . ~8!
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The surface integral in Eq.~7! represents the net proba-
bility flux out of cell Vm due to the dynamic drift in state
i . As we aim at interpreting the process variables evolu-
tion as state transitions between discrete cells, we must
split this integral between the total flux leaving cellVm

and the ingoing contributions from neighboring cells.
Therefore, we define the transition rate between cellsVm

andVn in dynamicsi as

Lmn
w ~i ! 5 52

1

m~Vm!
E

~Sm!i
1

Sn~ Sxs!{ Nfi ~ Sxs! d Sxs if m5 n

1

m~Vm!
E

~SmùSn!i
1

Sn~ Sxs!{ Nfi ~ Sxs! d Sxs if mÞ n ,

~9!

where~S!i
1 is the part ofSwhere Sn~ Sxs!. Nfi ~ Sxs! . 0. The

transition rate between the hybrid states~ j,Vn! and~i,Vm!
then is written

Ljn, im 5 Lji
c ~n!dnm1 Lnm

w ~ j !Qji ~n r m! . ~10!

In Eq. ~10!, Qji ~n r m! stands for the probability of
moving from statej to statei when crossing the control
setpoint between cellsVn andVm. This quantity is equal
to dji when the border common to these cells has no
physical interpretation.

With these definitions, Eq.~7! becomes

dpim~t !

dt
5 (

j
(
n

Ljn, impjn~t ! . ~11!

The original problem of dynamic reliability@see Eq.~6!#
is continuous in the evolution of the process variables
and discrete in the branchings between system configu-
rations. The cell-to-cell discretization reduces it to a time-
continuous Markov problem in a discrete space of hybrid
states~i,Vm!.

II.C. How Cell-to-Cell Discretization Affects
the Problem

At the beginning of Sec. II.B, a discussion was
initiated on the potential impact of the time stept on
the time discrete cell-to-cell scheme summarized in
Sec. II.A: An inappropriately small choice oft could
lead not only to slowing down the computation but also
to an erroneous representation of the dynamics. Indeed,
whent is small compared to the average sojourn time
within cells for some dynamics, the estimated probabil-
ity of leaving the current cell can become very small or
even vanish. The error induced by this situation does
not relate to the numerical inaccuracy entailed by the
discretization, but it comes from an improper modeling
of the problem.

The continuous version of the method that we
sketched in Sec. II.B turns out to overcome this diffi-
culty. Yet, it does not suppress another intrinsic source
of error associated with how the transfer between cells
in the way it is modeled actually modifies the problem
to be solved, potentially introducing nonphysical situa-
tions through a probability “leakage” between cells.

To understand the latter statement, it should first be
reminded that accident sequences~or transient scenarios
in general! correspond to trajectories in the process vari-
ables space, which do not entirely fill the safety domain
partitioned in cells, even if the dynamics in the different
configurations are defined everywhere. Indeed, once the
initial steady-state conditions are left, the system enters
a configuration in which the process variables evolve
deterministically as long as no branching takes place. In
this first section of the transient, the time evolution ofSx
follows a one-dimensional curve in the safety domain. If
a branching comes from the solicitation of a control de-
vice when crossing a setpoint, this curve will be split
into two parts: one of them carrying the failure probabil-
ity of the control device and the other one carrying the
complementary probability. If the next branching is as-
sociated with the time distributed occurrence of an event,
the set of all possible values ofSx after the change of
configuration becomes a section of a two-dimensional
surface since an additional degree of freedom~i.e., the
branching time! was introduced. The dimensions of the
support of the probability densitiesp~ Sx, i, t ! will in-
crease in this way by one unit after each nondeterminis-
tic transition between configurations.10 Because of its
singular nature, the support ofp~ Sx, i, t ! does not fully
cover the process variables domain partitioned in cells.

For this reason, in the development of a scenario,
when the process variables enter a given cell in a given
dynamics, they do not necessarily have access to all the
neighboring cells; even if the dynamics is well defined
and outgoing at some points of each border of the cell,
these points could belong to unreachable regions in the
continuous evolution process. Yet, in this case, Eq.~9!
defines transition rates between all neighboring cells in
all configurations, even though the real physical trajec-
tories underlying the accident sequences could never reach
their common border in some dynamics. The direct con-
sequence of this incorrect modeling is to obtain a non-
zero probability to find the system in a given hybrid state
~i,Vm!, though the physics of the accident transient pre-
vents such a situation.

We must thus conclude that the continuous cell-to-
cell mapping technique does not only numerically ap-
proximate the actual problem, but it is also likely to
modify it, creating additional nonphysical sequences that
can be deduced from the connectivity of the transition
matrix built according to Eq.~10!. The implementation
of the cell-to-cell transport approach we purport to do in
the case of stimulus-driven branchings should be real-
ized with this possible side effect in mind.
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III. STIMULUS-BASED CELL PARTITIONING
OF THE PROCESS VARIABLES SPACE

III.A. Definition of Cells

As mentioned in Sec. I, partitioning the process vari-
ables space in cells on which the fully dynamic equa-
tions of the probability density of accident sequences are
integrated is not~only! driven by the numerical neces-
sity to handle the high dimensionality of the problem. It
is instead motivated by observations from the PSA
practice.

First, although the continuous evolution of process
variables drives the delineation process of accident sce-
narios, the analyst is usually not interested in the de-
tailed information in Sx contained in the pdfp~ Sx, i, t !.
The relevant results consist instead of knowing as a func-
tion of time the probability that some process variables
lie in a given region of phase-space, while evolving in a
given dynamics, no matter what their detailed distribu-
tion inside this region is.

A second essential motivation of this approach is
related to the concept of stimulus that was introduced in
the companion paper.4 This new notion comes from the
following observation: An event causing a branching in
an accident sequence does not always take place instan-
taneously once its occurrence has been solicited. This
solicitation corresponds to the activation of a stimulus,
which “triggers” the event and from which a delay has to
elapse before its actual occurrence. Stimuli can take var-
ious forms:

• It can correspond to the crossing of a setpoint as-
sociated with the actuation of a control0protection
device; this threshold divides the process vari-
ables space into two regions.

• It can be defined by a safety limit, separating the
absorbing failure zone from the safe conditions.

• The entry in a domain where ignition conditions
are satisfied is another example of stimulus acti-
vation, inducing again a two-region partition of
phase-space.

• An operator will diagnose that he0she has a given
action to take when process variables lie in spe-
cific regions of phase-space.

• another stimulus corresponds to a component fail-
ure, taking effect with no delay.

• . . .

All these examples but the last one induce a parti-
tion of the process variables space. A process-based
definition of cells is thereby obtained by taking the
intersection of all these stimuli-dependent regions. This
partition can be refined, e.g., to account for criteria
used to merge scenarios in plant damage states or acci-
dent progression bins.

Besides this natural decomposition in cells, interpret-
ing the dynamic evolution of the plant along an accident
sequence as a probabilistic cell-to-cell transfer rests on
the practical knowledge on stimulus activations in the
level-2 PSA frame. Such an activation takes place with a
known probability either when reaching a setpoint or
within a given region of phase-space. In the latter case, a
detailed description of the activation phenomenon inside
the cell is either irrelevant or inaccessible. Stimulus-
based cells therefore appear, together with the setpoints
corresponding to their respective borders, as the elemen-
tary information on the process variables value, which
must be accounted for in the sequel of the paper.

III.B. Path of Cells

The differential nature of Eq.~6! implies it is re-
stricted to a Markovian branching process in the event
tree. Releasing the Markovian assumption asks for an
integral formulation of the evolution equations of the
branching process. This approach, reviewed in our com-
panion paper,4 was further explored there to account for
the stimulus-driven case.

This requires an adaptation of the way the possible
dynamic evolutions of the system can be reinterpreted as
a probabilistic transfer between cells. Transition rates
between neighboring cells, as propounded in Sec. II.B,
are no longer to be computed. They must be replaced by
transition probabilities between couples of cells on a fi-
nite time interval, which are the fraction of trajectories
connecting points inside these two cells, while evolving
according to a given dynamics.

In order to perform the integration of the evolution
equations deduced in Ref. 4 on the stimulus-based cells
in a coherent fashion with the conclusion of Sec. III.A, it
must be assumed that the precise value of the process
variables inside the cells becomes meaningless. Conse-
quently, we can write11

Hm~ Su!EH,~ Sx!d~ Sx 2 Sgi ~t, Su!! d Sx

5 Hm~ Su!H,~ Sgi ~t, Su!!

. Hm~ Su!E
Vm

H,~ Sgi ~t, Su!!
d Su

m~Vm!

[ Hm~ Su!Tm,~i, t ! . ~12!

A slight difference between Eq.~12! and Eq.~2! can be
observed:Tm,~i, t ! clearly stands for the fraction of pro-
cess evolutions in dynamicsi , which are initiated within
cell Vm and end up within cellV, after a timet.

Yet, this quantity possibly sums up contributions from
different situations. To understand this point, one can
look at Fig. 1.
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Two evolutions in the current dynamicsi and on the
same time intervalt are represented. Both originate in
cell Vm and reach cellV, . Yet, if these evolutions are now
considered in terms of transitions between cells, one of
them follows a pathc1, made up of cellsVm, Vn, Vp, and
V, , while the second one is discretized along pathc2 5
$Vm,Vr ,Vp,V, % . If stimuli can be activated at each border
between cells or inside each cell visited, the possibilities
for the system to branch out ofi are different, depending
on which path will be actually followed. Indeed, assum-
ing stimuli can be activated within cells or at their bor-
ders, the way events associated with these stimuli are in
competition is totally different along pathsc1 and c2.
Therefore, the total fractionTm,~i, t ! of deterministic tra-
jectories in dynamicsi connecting cellsVm andV, in a
time t should not be used globally. This fraction should
instead be particularized to each path of cellsc along
which the system can evolve between these two cells in
this time interval; the corresponding quantity, denoted
Tm,

c ~i, t !, is such that

Tm,~i, t ! 5 (
c

Tm,
c ~i, t ! . ~13!

We can also notice that the different pathsc correspond
to mutually exclusive situations, which can therefore be
treated independently. The so-interpreted probabilities

Tm,
c ~i, t ! can thus be used to weigh the different scenar-

ios, which appear more naturally in this discretization
while they were absent in the schemes presented in Sec. II.
The actual estimation ofTm,

c ~i, t !, which is of course not
performed based on Eq.~12!, is explained in Sec. V.

IV. CELL-TO-CELL SCHEMES FOR
STIMULUS-DRIVEN

BRANCHING PROCESSES

IV.A. Semi-Markov Case

IV.A.1. Continuous Model

Accounting for stimulus activations and delays in
the equations modeling the possible branchings between
different dynamics can be done first with the following
assumption: Once an event takes place and a new dy-
namics is entered, all stimuli that had been activated but
whose delays were not fully elapsed are disactivated. In
terms of the stochastic process, this amounts to saying
that the entry in a new dynamics is a regeneration point
and the branching process is semi-Markovian.

We showed in our companion paper that with this
assumption, the ingoing densityw~ Sx, i, t ! in configura-
tion i at point Sx is the solution of

w~ Sx, i, t ! 5 (
F

(
jÞi
E

o

t

dtEd Su @p~ Su, j,t!d~t! 1 w~ Su, j,t!#d~ Sx 2 Sgj ~t 2 t, Su!!qji
F~t 2 t; Su! , ~14!

whereqji
F~t; Su! is the probability per unit time that the event induced by stimulusF will cause a change of dynamics

from j to i , at timet after entering dynamicsj at point Su. It can be expressed according to

qij
F~t; Su! 5 E

o

t

fiF~t; Su!hij
F~t 2 t; Sgi ~t, Su!! dt )

GÞF
F12E

o

t

dt 'E
o

t '

dt fiG~t; Su!hi
G~t ' 2 t; Sgi ~t, Su!!G , ~15!

Fig. 1. Examples of paths of cells.
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wherefiF~t; Su! is the probability density function~pdf!
of the activation time of stimulusF in dynamicsi en-
tered at Su andhij

F~t; Su! is the probability per unit time of
a delayt between the activation ofF at point Su and the
occurrence of the event causing the transitioni r j @the
pdf of the delay associated with theF-induced event out
of i beinghi

F~t; Su! 5 (j hij
F~t; Su!# .

The ingoing density is related to the probability den-
sity through

p~ Sx, i, t ! 5 E
o

t

dtEd Su @p~ Su, i,t!d~t! 1 w~ Su, i,t!#

3 d~ Sx 2 Sgi ~t 2 t, Su!!{~12 Pi ~t 2 t; Su!! ,

~16!

where the probability 12 Pi ~t; Su! to survive a timet in
dynamicsi entered at Su is written

Pi ~t; Su! [ (
F

(
jÞi
E

o

t

qij
F~t; Su! dt . ~17!

A backward formulation of the problem, based on con-
ditional probability densities, can also be used. Its dis-
crete cell-to-cell counterpart is provided in the Appendix.

IV.A.2. Cell-to-Cell Transport Approach

Let us introduce the following quantities:

w,~i, t ! 5 EH,~ Sx!w~ Sx, i, t ! d Sx ~18!

and

p,~i, t ! 5EH,~ Sx!p~ Sx, i, t ! d Sx . ~19!

In order to perform the integration of Eqs.~14! and~16!
on cellV, , we replace* . . .d Su with (m * . . .Hm~ Su! d Su. We
then obtain for the integration of the Dirac peaks on cell
V, the result expressed in Eq.~12!. Moreover, taking into
account the different paths between two cells, we obtain
from Eq.~14!

w,~i, t ! 5 (
F

(
jÞi

(
m

(
c[Cj $m,,%

E
o

t

dt Tm,
c ~ j, t 2 t!

3 @pm~ j,t!d~t! 1 wm~ j,t!#qji
F,c~t 2 t, m! ,

~20!

where

Cj $m,,% 5 set of all paths of cells betweenVm and
V, in dynamicsj

qji
F,c~t, m! 5 probability per unit time that the transi-

tion j r i will follow the activation of
F along pathc given dynamicsj was
entered inside cellVm.

As for Eq. ~16!, after integration on cellV, , it becomes

p,~i, t ! 5 E
o

t

dt (
m

@pm~i,t!d~t! 1 wm~i,t!#

3 (
c[Cj $m,,%

Tm,
c ~i, t 2 t!Pm,

c ~i, t 2 t! , ~21!

wherePm,
c ~i, t ! is the survival probability in dynamicsi

for a system evolution between cellsVm andV, alongside
pathc. Since this implies that the system has “survived”
all stimulus-based events, we can write

Pm,
c ~i, t ! 5 )

F

Pm,
F,c~i, t ! . ~22!

The expression of each factor in the latter probabil-
ity can be built by examining on a step-by-step basis
along pathc the different possibilities of activation ofF.
We will treat the example of the pathc5 $Vm,Vn,Vp,V,,Vs%
given above~see Fig. 1!, as these particular results can
be generalized to any path. Note that we have added a
cell Vs to the path given in Fig. 1 in order to model the
competition between the occurrence of theF-induced
event inside cellV, and the dynamic drift toward the
next cellVs in configurationi along pathc.

We first assume that average sojourn times in the dif-
ferent cells belonging to pathc can be considered. Lettmn

be the average time spent in cellVm before reaching its
border with cellVn, along pathc in dynamicsi ~this dou-
ble dependence has been skipped in the notation for the
sake of clarity!. We also introducetmp, tm, , andtms, total
sojourn times along pathcbetween the borders of the cells
referenced as indexes. We must havetm, , t andt , tmsto
ensure a positive value ofPm,

F,c~i, t !. This should be im-
plicitly accounted for in the definition ofTm,

c ~i, t !.
Let vi, m

F denote the probability of activation of stim-
ulus F within cell Vm in configurationi . The activation
time of F within a cell is assumed uniformly distributed
on the sojourn time in this cell. In order to account for
the possibility of activation at a setpoint, we also define
wi, mn

F as the probability of activatingF in dynamicsi
while crossing the border between cellsVm andVn.

The expression ofPm,
F,c~i, t ! is established as fol-

lows. If F is activated in the first cell, the system sur-
vives in configurationi only if the corresponding change
of dynamics is delayed aftert. If it is not activated in the
first cell, it can be activated at the first setpoint, but the
delay up to the occurrence of the transition must prevent
a change of dynamics to occur beforet, and so on.
Therefore,

Pm,
F,c~i, t ! 5 vi, m

F E
o

tmn 1

tmn

~12 Hi
F~t 2 t; m!! dt

1 ~12 vi, m
F !@wi, mn

F ~12 Hi
F~t 2 tmn; mn!!

1 ~12 wi, mn
F !{a# , ~23!
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whereHi
F~t; m! is the cumulative density function of the delay if stimulusF is activated in cellVm in dynamicsi ,

while Hi
F~t; mn! corresponds to the same probability, given the activation occurring at the border between cellsVm

andVn. Factora appearing in Eq.~23! stands for the survival probability in dynamicsi once stimulusF has not been
activated in cellVm nor at its border with cellVn. In the particular case we treat, it is written by recurrence as follows:

a 5 vi, n
F E

tmn

tmp 1

tmp2 tmn

~12 Hi
F~t 2 t; n!! dt

1 ~12 vi, n
F !@wi, np

F ~12 Hi
F~t 2 tmp; np!! 1 ~12 wi, np

F !{b# , ~24!

b 5 vi, p
F E

tmp

tm, 1

tm, 2 tmp

~12 Hi
F~t 2 t; p!! dt

1 ~12 vi, p
F !@wi, p,

F ~12 Hi
F~t 2 tm, ; p,!! 1 ~12 wi, p,

F !{g# , ~25!

and

g 5 vi,,
F E

tm,

t 1

tms2 tm,

~12 Hi
F~t 2 t;,!! dt 1 S12 vi,,

F {
t 2 tm,

tms2 tm,
D . ~26!

It must be underlined that in practice, the expression ofPm,
F,c~i, t ! is likely to reduce to a much more compact form

because of the physical impossibility of having stimulusF activated in some cells and at some setpoints. Indeed, a
stimulus will correspond in general to one setpoint or several cells.

The developments above rest on the assumption that average values oftmn, tmp, tm, , andtmscan be used. Actually,
this might not be appropriate as it reduces the possible evolutions of the system along pathc to one single determin-
istic time sequence. Considering that these sojourn times are distributed according to a four-variate distributiongi

c

~since these times are not independent!, we must understand Eq.~23! as being conditional totmn, tmp, tm, , andtms. The
same is true forTm,

c ~i, t !. Equation~21! should then make use of

Tm,
c ~i, t !Pm,

c ~i, t ! 5 E . . .Etm,,t,tms

tmn,tmp,tm,

gi
c~tmn, tmp, tm, , tms!Tm,

c ~i, t; tmn, tmp, tm, , tms!

3 )
F

Pm,
F,c~i, t; tmn, tmp, tm, , tms! dtmndtmpdtm, dtms . ~27!

We will discuss in Sec. V how to practically determine and use these distributionsgi
c.

Let us express now the probability per unit time of a transition between dynamicsi and j after a timet, while
having been transported from cellVm to cellVn, following an event triggered by stimulusF. From Eqs.~15! and~17!,
we can write

qij
F,c~t, m! 5 pm,

F,c~i r j, t ! )
GÞF

Pm,
G,c~i, t ! , ~28!

wherepm,
F,c~i r j, t ! denotes the same probability per unit time asqij

F,c~t, m! but when considering only stimulusF. It
is built on Eq.~23! by deriving it and selecting the transition to dynamicsj:

pm,
F,c~i r j, t ! 5 vi, m

F E
o

tmn 1

tmn

hij
F~t 2 t; m! dt

1 ~12 vi, m
F !@wi, mn

F hij
F~t 2 tmn; mn! 1 ~12 wi, mn

F !{~2 _a!# , ~29!

where along the particular pathc taken as example, we have

~2 _a! 5 vi, n
F E

tmn

tmp 1

tmp2 tmn

hij
F~t 2 t; n! dt

1 ~12 vi, n
F !@wi, np

F hij
F~t 2 tmp; np! 1 ~12 wi, np

F !{~2b̂!# , ~30!

~2b̂! 5 vi, p
F E

tmp

tm, 1

tm, 2 tmp

hij
F~t 2 t; p! dt

1 ~12 vi, p
F !@wi, p,

F hij
F~t 2 tm, ; p,! 1 ~12 wi, p,

F !{~2 _g!# , ~31!
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and

~2 _g! 5 vi,,
F E

tm,

t 1

tms2 tm,

hij
F~t 2 t;,! dt . ~32!

The distribution oftmn, tmp, tm, , andtmscan be accounted
for just as before.

It is easily seen that the adaptation of Eqs.~23!
through ~26!, and ~29! through ~32!, respectively, to a
general pathc [ $Vm [ Vn1

,Vn2
. . .Vnr21

,V, [ Vnr
,Vs% is

straightforward.

IV.B. General Non-Markov Case

IV.B.1. Continuous Model

Releasing the assumption of disactivation of all ac-
tivated stimuli once a change of dynamics occurs leads
to a non-Markov modeling based on two ingoing
densities4:

• win~ Sx, j, t, AtA ,A!: density of entering dynamicsj
at point Sx and timet, with a setA of stimuli re-
maining activated;AtA denotes the activation times
of the stimuli belonging toA

• wF ~ Sx, j, t,t, AtA ,A!: density of activating stimulus
F in dynamicsj at ~ Sx, t !, this configurationj be-
ing entered att, this activation resulting in a set
A of activated stimuli~this density is nonzero if
tF [ t !.

They were shown to obey the following evolution
equations:

win~ Sx, j, t, AtA ,A!

5 (
A '.A

(
F[A '

(
iÞj
Ed SuE

o

t

dt

3 E
o

t

. . .E
o

t

d AtA '0A d~ Sx 2 Sgi ~t 2 t, Su!!

3 pij
F~t;t,t, Su, AtA ' ,A ' !{win~ Su, i,t, AtA ' ,A ' !

3 dij
F~A ' r A!

1 (
A '.A

(
F[A '

(
iÞj

(
G[A '

Ed SuE
o

t

dt*E
o

t*

dt

3 E
o

t*

. . .E
o

t*

d AtA '0A d~ Sx 2 Sgi ~t 2 tG, Su!!

3 pij
F~t;tG,t, Su, AtA ' ,A ' !{wG~ Su, i,tG,t, AtA ' ,A ' !

3 dij
F~A ' r A!d~t* 2 tG ! ~33!

and

wF ~ Sx, j, t,t, AtA1$F% ,A 1 $F%!

5 Ed Su d~ Sx 2 Sgj ~t 2 t, Su!!pj
F*~t;t,t, Su, AtA ,A!

3 @p~ Su, j,t!d~t!dA,B 1 win~ Su, j,t, AtA ,A!#

1 (
G[A

Ed Su d~ Sx 2 Sgj ~t 2 tG, Su!!

3 pj
F*~t;tG,t, Su, AtA ,A!{wG~ Su, j,tG,t, AtA ,A! . ~34!

Note that in the second term on the right side of Eq.~33!,
a Dirac peak ont* , taken equal to the last activation
time tG, is not directly integrated. Indeed, stimulusG
may or may not belong to setA. Only in the negative
case will tG be a dummy variable for integration~ac-
counted for in AtA '0A !.

In these expressions, we have made use of the fol-
lowing quantities:

• dij
F~A ' r A! embodies the rules of disactivation

of the stimuli belonging toA' due to theF-induced
transition i r j, with only those inA remaining
activated in the new dynamics.

• pij
F~t;t*,t, Su*, AtA ,A! dt is the probability that the

F-induced transitioni r j takes place in@t, t 1
dt# , given dynamicsi was entered att and the last
event occurred at~ Su*,t* !, with a setA of stimuli
activated at AtA resulting from it:

pij
F~t;t*,t, Su*, AtA ,A! dt

5
Dhij
F~t 2 t; Su6t 2 tF ! dt

12 EHi
F~t* 2 t; Su6t 2 tF !

3 )
G[A
GÞF

12 EHi
G~t 2 t; Su6t 2 tG !

12 EHi
G~t* 2 t; Su6t 2 tG !

3 )
HÓA

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

, ~35!

where Su* 5 Sgi ~t* 2 t, Su!.
• pi

F*~t;t*,t, Su*, AtA ,A! dt is the probability of acti-
vating F in dynamicsi in @t, t 1 dt# , given the
same conditions as before:

pi
F*~t;t*,t, Su*, AtA ,A! dt

5
fi

F~t 2 t; Su! dt

12 Fi
F~t* 2 t; Su!

{ )
HÓA
HÞF

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

3 )
G[A

12 EHi
G~t 2 t; Su6t 2 tG !

12 EHi
G~t* 2 t; Su6t 2 tG !

. ~36!

Tilded distributions EHi
F~t; Su6t 2 tF ! for the delays were

introduced. They are conditioned by the probability of a
delay larger thant 2 tF if F was activated attF , t, the
time of entry in configurationi .
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The probability density then is written

p~ Sx, i, t;A! 5 Ed Su*E
o

t

dt*E
o

t*

dtE
o

t*

. . .E
o

t*

d AtA d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

3 F@p~ Su, j,t!d~t!dA,B 1 win~ Su*, i,t*, AtA ,A!#d~t* 2 t!1 (
F[A

wF ~ Su*, i,t*,t, AtA ,A!d~t* 2 tF !G ~37!

with

12 Pi ~t;t*,t, Su*, AtA ,A! 5 )
G[A

12 EHi
G~t 2 t; Su6t 2 tG !

12 EHi
G~t* 2 t; Su6t 2 tG !

3 )
HÓA

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

. ~38!

IV.B.2. Cell-to-Cell Transport Approach

The discrete forms of Eqs.~33! and~34! rest on the
definition of the following densities:

• win~,, j, t, AtA ,A!: density of entering dynamicsj
in cell V, and timet, with a setA of stimuli acti-
vated at timesAtA

• wF ~L, j, t, m,t, AtA , AmA ,A!: density of activating
stimulusF in dynamicsj at “place” L and timet,
given this configurationj was entered in cellVm

and at timet, this activation resulting in a setA of
stimuli activated at timesAtA and places AmA . This
density will be nonzero iftF [ t andmF [ L.

Note that if the first quantity directly comes from the
integration on cellV, of its correspondent in the continu-
ous process variables space, the situation is slightly dif-
ferent for the second one. Indeed, in the definition of the
discretewF , we have added to the entry timet in the cur-
rent configurationj the cellVm in which this event took
place. This information is essential to restrict the paths of
cells reachingL to those originating inVm, thereby avoid-
ing nonphysical scenarios~see Sec. II.C!. Moreover, the
concept of “place” was introduced in the foregoing sec-
ond bulleted item. As we assume a stimulus can be acti-
vated at a border between cells or inside a cell, we must
account for these two kinds of situations in the ingoing
density of stimulus activation. Any of this case is then re-

ferred to as a place. This now forces us to understand a
path of cells in a broader way, including their common
borders as well. Therefore, the fraction of dynamic trajec-
toriesTm,

c ~i, t ! connectingVm andV, along pathc in dy-
namicsi has to be seen between places, and not cells only.

An additional dependence ofwF on AmA , a vector con-
taining the activation places of all stimuliG[Aandsuch
thattG . t, has been introduced. Indeed, if stimulusG
was activated at timetG , t, the time of entry in dynam-
ics i , the place whereG was activated has no direct influ-
ence aftert because of the change of dynamics that
occurred there. There is therefore no dependence onAmA
in win . WhentG . t, however, the corresponding activa-
tion place is a constraint for thepath of placesthat can be
followed in dynamicsi . These places should then be kept
in memory together with the activation times. When con-
sidering the probability of a next event, either a change of
dynamics or an additional stimulus activation, the places
of activation of these stimuli define which path of cells
can be followed in a coherent way with the chronological
series of activation times. VectorsAmA and AtA will thus be
used to limit the study to those paths of cellsc that are
relevant in modeling the possible discrete dynamic evo-
lutions of the system in a given state. We will then denote
the dependence of the delay distributions on the process
variables as a dependence on the current pathc.

The cell-to-cell transport equation associated with
Eq. ~33! then is written

win~,, j, t; AtA ,A! 5 (
A '.A

(
iÞj
E

o

t

dt*E
o

t*

. . .E
o

t*

d AtA '0A (
m

win~m, i,t*, AtA ' ,A ' ! (
c[Ci $m,,%

Tm,
c ~i, t 2 t* !

3 (
F[A '

Dhij
F~t 2 t*,c6t* 2 tF !{ )

G[A '
GÞF

~12 EHi
G~t 2 t*,c6t* 2 tG !!{ )

HÓA '
Rm,

H,c~i, t 6t*, m,t* !{dij
F~A r A ' !

1 (
A '.A

(
iÞj

(
J[A '

E
o

t

dtJE
o

tJ

dtE
o

tJ

. . .E
o

tJ

d AtA '0~A1$J%! (
m

(
AmA

wJ~mJ , i,tJ , m,t, AtA ' , AmA ' ,A ' !

3 (
c[Ci $m, AmA' , AtA' ,,%

TmJ ,
c ~i, t 2 tJ ! (

F[A '

Dhij
F~t 2 t,c6t 2 tF !

12 EHi
F~tJ 2 t,c6t 2 tF !

3 )
G[A '
GÞF

12 EHi
G~t 2 t,c6t 2 tG !

12 EHi
G~tJ 2 t,c6t 2 tG !

{ )
HÓA '

RmJ ,
H,c ~i, t 6t, m,tJ !{dij

F~A ' r A! . ~39!

Let us comment on Eq.~39!.
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It should be observed that this time,Ci $m, AmA , AtA ,,%
still denotes the set of all paths of cells connectingVm

andV, in dynamicsi , but with the additional condition
of including places AmA , where the previous activations
took place, in the chronological order given byAtA . Fol-
lowing the remark above Eq.~39!, the possible paths are
thus restricted to those containing the places of activa-
tion of stimuli having been activated between the entry
in configurationi and the last activation that took place
at VmJ

. Doing so, we avoid considering paths that, de-
spite connectingVmJ

andV, , could not have originated
in cell Vm. This strongly limits the number of terms to be
considered in practice when dealing with the multiple
sum( AmA on all components of this vector.

Equation~39! also makes use ofRL,
G,c~i, t 6t, m,t* !,

the conditional probability that stimulusG is not acti-
vated before timet, on the section of pathc between
placeL and cellV, , in dynamicsi , provided the latter
was entered in cellVm at timet, givenG was not acti-
vated when the last event took place att* . Before devel-
oping this expression, we introduce the corresponding
pdf of activation

rL,
G,c~i, t 6t, m,t* ! 5 2

dRL,
G,c~i, t 6t, m,t* !

dt

in order to write the cell-to-cell process associated with
Eq. ~34!:

wF ~,, j, t, m,t, AtA1$F% , AmA1$F% ,A 1 $F%!

5 @dA,B d~t!pm~ j,t! 1 win~m, j,t, AtA ,A!#

3 (
c[Cj $m,,%

Tm,
c ~ j, t 2 t!{rm,

F,c~ j, t 6t, m,t!

3 )
HÓA
HÞF

Rm,
H,c~ j, t 6t, m,t!

3 )
G[A

~12 EHi
G~t 2 t,c6t 2 tG !!

1 (
J[A

wJ~mJ , j,tJ , m,t, AtA , AmA ,A!

3 (
c[Cj $m, AmA , AtA ,,%

TmJ ,
c ~ j, t 2 tJ !

3 rmJ ,
F,c ~ j, t 6t, m,tJ ! )

HÓA
HÞF

RmJ ,
H,c ~ j, t 6t, m,tJ !

3 )
G[A

12 EHi
G~t 2 t,c6t 2 tG !

12 EHi
G~tJ 2 t,c6t 2 tG !

. ~40!

WhenF is activated, vectorAmA is updated withmF [ ,,
and vector AtA is updated withtF [ t.

As for the probability to find the system in cellV,

and dynamicsi , it is easily obtained in terms of ingoing
densities according to

p,~i, t;A! 5 E
o

t

dt*E
o

t*

. . .E
o

t*

d AtA

3 (
m

@dA,B d~ AtA 2 ;0!d~t* !pm~i,t* !

1 win~m, i,t*, AtA ,A!#

3 (
c[Ci $m,,%

Tm,
c ~i, t 2 t* !

3 )
G[A

~12 EHi
G~t 2 t*,c6t* 2 tG !!

3 )
HÓA

Rm,
H,c~i, t 6t*, m,t* !

1 (
F[A

E
o

t

dtFE
o

tF

dtE
o

tF

. . .E
o

tF

d AtA0$F%

3 (
m

(
AmA

wF ~mF , i,tF , m,t, AtA , AmA ,A!

3 (
c[Ci $m, AmA , AtA ,,%

TmF ,
c ~i, t 2 tF !

3 )
G[A

12 EHi
G~t 2 t,c6t 2 tG !

12 EHi
G~tF 2 t,c6t 2 tG !

3 )
HÓA

RmF ,
H,c ~i, t 6t, m,tF ! . ~41!

Let us now give the expression ofRL,
G,c~i, t 6t, m,t* !

and rL,
G,c~i, t 6t, m,t* ! using the same notations as in

Sec. IV.A. Assume thus thatc [ $Vm [ Vn1
,Vn2

. . .L . . .
Vnr21

,V, [ Vnr
,Vs% is the full path betweenVm and V, ,

which is as before completed by cellVs. We should first
observe that our results will depend on the nature ofL
and,, i.e., if they correspond to cells or borders.

The probability of nonactivation of stimulusG at
time t is the product of the individual probabilities of
nonactivation in the cells belonging to pathc and at their
borders. The same is true for the conditioning probabil-
ity of not being activated up to placeL at timet* . There-
fore, all factors of these probabilities up toL will disappear
in the conditional probabilityRL,

G,c~i, t 6t, m,t* !, possi-
bly but the one corresponding toL if it is a cell. Indeed,
in this case~L [ Vna

!, the probability of not being acti-
vated in this cell beforet* is ~12 vi, na

G {@~t*2 t! 2 tmna
#0

~tmna11
2 tmna

!! since we havet 1 tmna
# t* # t 1 tmna11

.
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Then, if L Þ ,, we can write

RL,
G,c~i, t 6t, m,t* ! 5

12 vi, na

G

12 vi, na

G {
~t* 2 t! 2 tmna

tmna11
2 tmna

3 ~12 wi, nana11

G !

3 F )
j5a11

r21

~12 vi, nj

G !.~12 wi, nj nj11

G !G
3 S12 vi,,

G {
t 2 ~t 1 tm, !

tms2 tm,
D ~42!

iff V, is a cell andt 1 tm, , t , t 1 tms. If index ,
denotes the borderL, between cellsVnr21

and Vnr
, the

last factor after the brackets in Eq.~42! must be skipped.
If L 5 ,, Eq. ~42! reduces to

RLL
G,c~i, t 6t, m,t* ! 5

12 vi, na

G {
~t 2 t! 2 tmna

tmna11
2 tmna

12 vi, na

G {
~t* 2 t! 2 tmna

tmna11
2 tmna

. ~43!

Now, let us consider the second case whereL is the
border between cellsVna

andVna11
; we have

RL,
G,c~i, t 6t, m,t* ! 5 F )

j5a11

r21

~12 vi, nj

G !{~12 wi, nj nj11

G !G
3 S12 vi, n,

G {
t 2 ~t 1 tm, !

tms2 tm,
D ~44!

if , stands for the cellV, [ Vnr
, and

RL,
G,c~i, t 6t, m,t* ! 5 F )

j5a11

r21

~12 vi, nj

G !{~12 wi, nj nj11

G !G
~45!

if , denotes the borderL, betweenVnr21
andVnr

.
Finally, we give the expression ofrL,

G,c~i, t 6t, m,t* !
in the different possible cases. If, stands for the cellVnr

,
we have

rL,
G,c~i, t 6t, m,t* ! 5 RLLr

G,c~i,t 1 tm, 6t, m,t* !

3 H~t 2 t 2 tm, !H~t 1 tms2 t !

3
vi,,

G

tms2 tm,

, ~46!

whereLr is the border betweenVnr21
andVnr

.

If , denotes the borderL, [ Lr , we obtain

rL,
G,c~i, t 6t, m,t* ! 5 RLnr21

G,c ~i, t 6t, m,t* !wi, nr21nr

G

3 d~t 2 t 2 tm, ! . ~47!

The Dirac peak in Eq.~47! actually comes from the
derivation of the implicit Heaviside stepfunction ont in
the expression ofR.

IV.C. Accounting for Random Shocks

In the first paper of this series,4 we have modeled
the possibility of an instantaneous modification of some
process variables value when a change of dynamics oc-
curs. Such a situation can for instance correspond to the
modeling of a combustion, which has a much smaller
duration than the other characteristic times of the tran-
sient and which can therefore be considered instantaneous.

The magnitude of such a jump in the process vari-
ables is random; the valueSx1 of the process variables
after a transition between dynamicsj and i is written

Sx1 5 Tyji ~ Sx2, Sz! , ~48!

where Sx2 are the process variables before the transition
and Sz is a vector of shock variables, distributed accord-
ing to the pdffji ~ Sz!. Going back to the combustion ex-
ample mentioned above, a possible shock variable is the
burn completeness.

In order to integrate this feature in our cell-to-cell
framework and to obtain the adaptation of Eq.~20! @or
Eq.~39! in the non-Markov case# , we introduce the prob-
ability Jji ~n r ,6 Sz! that the transitionj r i will be
associated with a jump between cellsVn andV, , given Sz
is the value of the shock variables. We observe therefore
that the deterministic jump~given Sz! determined by
Eq. ~48! in the continuous model is again interpreted in
the cell-to-cell transport theory as a transfer probability
between cells.

Equation~20! then becomes

w,~i, t ! 5 (
F

(
j
(
m

(
n

(
c[Cj $m, n%

E
o

t

dt Tmn
c ~ j, t 2 t!

3 SEJji ~n r ,6 Sz!fji ~ Sz! d SzD
3 @pm~ j,t!d~t! 1 wm~ j,t!#qji

F,c~t 2 t, m! .

~49!

Of course, the integration onSz could easily be re-
placed with a sum onSz cells on which these shock vari-
ables would be discretized as well.

The same kind of adaptation is straightforward in
Eqs.~39! and~40! in the non-Markov case.
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V. PRACTICAL IMPLEMENTATION

Considering the evolution equations between hybrid
states that were deduced in Sec. IV.B.2, we observe the
following:

• The activation probabilities of stimuli within cells
and at setpoints are data for the problem.

• The distributions of the time delays between a stim-
ulus activation and the occurrence of the event
should not be more difficult to assess in the dis-
crete cell-to-cell scheme than in the continuous
case.

• Transfer probabilitiesTm,
c ~i, t ! in dynamics i

along pathc cannot be computed as such from
Eq. ~12!; they have to be approximated from a
limited number of dynamic runs. The same con-
clusion is true for the pdfgi

c of the sojourn times
in the different cells of the path.

In order to estimate these two sets of quantities, we
define, such as in the first time discrete cell-to-cell tech-
nique ~see Sec. II.A!, a finer grid inside each cell. Yet,
the way we suggest to use it is somehow different.

The stimulus-based theory developed in Ref. 4 aims
at dealing with level-2 PSA scenarios. Therefore, the
corresponding accident sequences are not likely to dis-
play cycles of transitions between configurations; rather,
they present a one-directional evolution toward an end
state, be it a failure event or a safe situation. For this
reason, there is no need to preprocess transfer probabil-
ities for each and every couple of cells, in all possible
dynamics, since some regions of phase-space will never
be visited in some dynamics. Moreover, the risk of cre-
ating nonphysical scenarios through the discretization
process, which was mentioned in Sec. II.C, should be
reduced as much as possible.

In order to account for these characteristics of the
problem, the following scheme is propounded, starting
only from those cellsVm in which the system can ini-
tially lie and in those dynamicsi that can be entered at
the beginning of the transient:

• From the center of each subcell belonging to the
fine grid within cell Vm, the continuous process
variables evolution in dynamicsi is computed.

• Each cellV, crossed by this trajectory is checked
to belong to or not belong to an already identified
path of cellsc. The time interval during which the
system lies in cellV, leads to a crenellation-
shaped estimation ofTm,

c ~i, t ! for this run; these
individual estimations will be averaged on all runs
initiated in subcells ofVm to provide the approxi-
mated value ofTm,

c ~i, t !.

• The subcells ofV, visited by the current trajectory
are marked; only those subcells that are marked

after completing all the runs originating in cellVm

are to be considered when estimating the transfer
probabilities of typeTm,

c ~ j, t ! at a second stage of
preprocessing; only those dynamicsj where the
system can undergo a transition to from dynamics
i in cell V, are then to be investigated.

As for the pdfgi
c, it can be assessed from the runs

we have to perform to obtain the transfer probabilities
Tmv

c ~i, t !. Indeed, in each run,tmv is the time at which
cell Vv is entered. Collecting this information in all runs
performed from the hybrid state~i,Vm! provides a his-
togram from which the distributiongi

c~tmv ! can be ob-
tained after proper normalization. It can be noticed that
using such a normalized histogram is more appropriate
than choosing a specific type of distribution, such as
a simple uniform law. Indeed, we have for instance
tmp 5 tmn 1 tnp, wheretnp is the sojourn time in cellVn

up to the border ofVp andgi
c~tmp! is the convolution of

gi
c~tmn! and the pdf oftnp. Yet, uniform densities are

not conjugate, and this choice of distribution would im-
ply a strong assumption on the nature of the distribu-
tion of tnp.

We can also note that such a histogram, before nor-
malization, can be used in the non-Markov case as well.
It must then be averaged to provide the transfer proba-
bility between cellVm and the setpoint at the border be-
fore enteringVv .

VI. CONCLUSIONS

In this second paper, the issue of practically imple-
menting the concept of stimulus-driven branchings in
the construction of an accident progression event tree
was addressed. We propounded to resort to an inter-
pretation of the dynamic evolution of the plant in the
different configurations in which it can lie as a proba-
bilistic transfer between cells based on the partition of
the process variables space entailed by the definition of
the stimuli.

First, previous works on cell-to-cell mapping ap-
plied to dynamic reliability problems were reviewed. This
allowed us to pinpoint new challenges to be taken up in
our case, namely, the discretization of integral equations
instead of partial differential equations and the need to
release the Markovian assumption. Above this, a deeper
look at these works highlighted how the discretization of
the dynamics could affect the problem itself by creating
nonphysical situations with a nonzero probability.

The notion of path of cells helped us to bring a first
solution to the abovementioned drawback. These mutu-
ally exclusive paths along which two cells can be con-
nected alongside the same dynamics are an essential part
of the modeling of competing events, as stimuli are ac-
tivated in a possibly different order depending on the
path considered. This concept was included in the
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discrete form of both semi-Markov and non-Markov sets of evolution equations for the ingoing and probability
densities describing the branching process. As a result, a sound methodological approach to level-2 PSA applications,
including the effect of the dynamics on the generation of scenarios, is thus propounded. Considerations on how to
implement practically the discrete cell-to-cell scheme were then given.

Ongoing work devoted to the application of this method to large-sized applications is now needed. Its use as a
basis for devising numerical schemes to solve the quantitative problem of estimating the frequency of accident
sequences should also be considered. Accordingly, future developments should also investigate if the present parti-
tion in cells based on the regions defined by the stimuli in phase-space is sufficiently refined in practice.

APPENDIX

BACKWARD TREATMENT

One of the drawbacks of the forward treatment presented in Sec. IV is the need to resort to a coupled system of
equations~for the ingoing density and for the probability density! to model the problem and to give allowance to the
entry in a new dynamics in a semi-Markovian assumption. The backward formulation of the problem, which refers to
the conditional probability density, contains similar information in one equation, provided the conditioning coordi-
nates correspond to the entry in a new dynamics.

We therefore present in this Appendix the cell-to-cell form of the backward equations that were also given in our
companion paper.

A.I. SEMI-MARKOV CASE

Using Eqs.~15! and~17!, we obtain for the conditional probability density

p~ Sx, i, t 6 Sxo, k, to! 5 dik~12 Pi ~t 2 to; Sxo!!d~ Sx 2 Sgi ~t 2 to, Sxo!!

1 (
jÞk

(
F
E

to

t

qkj
F ~t 2 to; Sxo!p~ Sx, i, t 6 Sgk~t 2 to, Sxo!, j,t! dt . ~A.1!

Let p,~i, t 6m, k! be the probability that the system lies in cellV, while evolving according to dynamicsi , a timet
after entering dynamicsk in cell Vm. Using the notations introduced in Eqs.~20!, ~21!, and~22!, we obtain as the
result of the discretization

p,~i, t 6m, k! 5 dikPm,~i, t !1 (
n

(
jÞk

(
F

(
c[Ck$m, n%

E
o

t

Tmn
c ~k,t!qkj

F,c~t, m!p,~i, t 2 t6n, j ! dt , ~A.2!

where

Pm,~i, t ! 5 (
c[Ci $m,,%

Tm,
c ~i, t !Pm,

c ~i, t ! . ~A.3!

A.II. GENERAL NON-MARKOV CASE

This time, the probability density is taken conditional to a last event having taken place at~ Su*,t* ! and having
resulted in a setA of activated stimuli in dynamicsk entered att. We have

p~ Sx, i, t 6 Su*, k,t*,t, AtA ,A!

5 dik{d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

1 (
GÓA

E
t*

t

dtG p~ Sx, i, t 6 Sgk~tG 2 t*, Su* !, k,tG,t, AtA1$G% ,A 1 $G%!{pk
G*~tG;t*,t, Su*, AtA ,A!

1 (
A '

(
j

E
t*

t

dsp~ Sx, i, t 6 Sgk~s2 t*, Su* !, j,s,s, AtA ' ,A ' ! (
G[A

pkj
G~s;t*,t, Su*, AtA ,A!dkj

G~A r A ' ! . ~A.4!
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In order to discard nonphysical system evolutions, the conditional probability associated with the cell-to-cell
transfer process refers to the cellVm where dynamicsk was entered, as well as to placesAmA where the activations took
place. Then, using the notations defined in Sec. IV.B,

p,~i, t 6L, k,t*,t, m, AtA , AmA ,A!

5 dik{ (
c[Ci $m, AmA , AtA ,,%

TL,
c ~i, t 2 t* ! )

GÓA
RL,

G,c~i, t 6t, m,t* !{ )
F[A

12 EHi
F~t 2 t;c6t 2 tF !

12 EHi
F~t* 2 t;c6t 2 tF !

1 (
GÓA

(
mG

E
t*

t

dtG (
c[Ck$m, AmA , AtA , mG%

TLmG

c ~k,tG 2 t* ! (
GÓA

rLmG

G,c ~k,tG 6t, m,t* !{ )
HÓA
HÞG

RLmG

H,c ~k,tG 6t, m,t* !

3 )
F[A

12 EHk
F~s* 2 t;c6t 2 tF !

12 EHk
F~t* 2 t;c6t 2 tF !

{p,~i, t 6mG, k,tG,t, m, AtA1$G% , AmA1$G% ,A 1 $G%!

1 E
t*

t

ds(
n

(
c[Ck$m, AmA , AtA , n%

TLn
c ~k,s2 t* !{ )

FÓA
{RLn

F,c~k,s6t, m,t* !

3 (
j

(
G[A

Dhkj
G~s2 t;c6t 2 tG !

12 EHk
G~t* 2 t;c6t 2 tG !

{ )
H[A
HÞG

12 EHk
H~s2 t;c6t 2 tH !

12 EHk
H~t* 2 t;c6t 2 tH !

3 (
A '

dkj
G~A r A ' !{p,~i, t 6n, j,s,s, n, AtA ' , ;0,A ' ! . ~A.5!
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